Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reximddv3 Structured version   Visualization version   Unicode version

Theorem reximddv3 39343
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
reximddv3.1  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  ch )
reximddv3.2  |-  ( ph  ->  E. x  e.  A  ps )
Assertion
Ref Expression
reximddv3  |-  ( ph  ->  E. x  e.  A  ch )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem reximddv3
StepHypRef Expression
1 reximddv3.1 . . 3  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  ch )
21anasss 679 . 2  |-  ( (
ph  /\  ( x  e.  A  /\  ps )
)  ->  ch )
3 reximddv3.2 . 2  |-  ( ph  ->  E. x  e.  A  ps )
42, 3reximddv 3018 1  |-  ( ph  ->  E. x  e.  A  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   E.wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-ral 2917  df-rex 2918
This theorem is referenced by:  climisp  39978  climrescn  39980  climxlim2lem  40071
  Copyright terms: Public domain W3C validator