Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climisp Structured version   Visualization version   Unicode version

Theorem climisp 39978
Description: If a sequence converges to an isolated point (w.r.t. the standard topology on the complex numbers) then the sequence eventually becomes that point. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climisp.m  |-  ( ph  ->  M  e.  ZZ )
climisp.z  |-  Z  =  ( ZZ>= `  M )
climisp.f  |-  ( ph  ->  F : Z --> CC )
climisp.c  |-  ( ph  ->  F  ~~>  A )
climisp.x  |-  ( ph  ->  X  e.  RR+ )
climisp.l  |-  ( (
ph  /\  k  e.  Z  /\  ( F `  k )  =/=  A
)  ->  X  <_  ( abs `  ( ( F `  k )  -  A ) ) )
Assertion
Ref Expression
climisp  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  =  A )
Distinct variable groups:    A, j,
k    j, F, k    j, M    j, X, k    j, Z, k    ph, j, k
Allowed substitution hint:    M( k)

Proof of Theorem climisp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . 4  |-  F/ k ( ph  /\  j  e.  Z )
2 nfra1 2941 . . . 4  |-  F/ k A. k  e.  (
ZZ>= `  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  X )
31, 2nfan 1828 . . 3  |-  F/ k ( ( ph  /\  j  e.  Z )  /\  A. k  e.  (
ZZ>= `  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  X ) )
4 simplll 798 . . . 4  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  A. k  e.  (
ZZ>= `  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  X ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ph )
5 climisp.z . . . . . 6  |-  Z  =  ( ZZ>= `  M )
65uztrn2 11705 . . . . 5  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
76ad4ant24 1298 . . . 4  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  A. k  e.  (
ZZ>= `  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  X ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  k  e.  Z
)
8 rspa 2930 . . . . . 6  |-  ( ( A. k  e.  (
ZZ>= `  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  X )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  X ) )
98simprd 479 . . . . 5  |-  ( ( A. k  e.  (
ZZ>= `  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  X )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( abs `  (
( F `  k
)  -  A ) )  <  X )
109adantll 750 . . . 4  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  A. k  e.  (
ZZ>= `  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  X ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( abs `  (
( F `  k
)  -  A ) )  <  X )
11 simpl3 1066 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
X )  /\  -.  ( F `  k )  =  A )  -> 
( abs `  (
( F `  k
)  -  A ) )  <  X )
12 neqne 2802 . . . . . . 7  |-  ( -.  ( F `  k
)  =  A  -> 
( F `  k
)  =/=  A )
13 climisp.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  RR+ )
1413rpred 11872 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR )
1514ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  ( F `  k )  =/=  A )  ->  X  e.  RR )
16 climisp.f . . . . . . . . . . . 12  |-  ( ph  ->  F : Z --> CC )
1716ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
18 climisp.c . . . . . . . . . . . . . 14  |-  ( ph  ->  F  ~~>  A )
195fvexi 6202 . . . . . . . . . . . . . . . . 17  |-  Z  e. 
_V
2019a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  Z  e.  _V )
2116, 20fexd 39296 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  e.  _V )
22 eqidd 2623 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( F `
 k )  =  ( F `  k
) )
2321, 22clim 14225 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
2418, 23mpbid 222 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x ) ) )
2524simpld 475 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
2625adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
2717, 26subcld 10392 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  -  A )  e.  CC )
2827abscld 14175 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( F `
 k )  -  A ) )  e.  RR )
2928adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  ( F `  k )  =/=  A )  ->  ( abs `  ( ( F `
 k )  -  A ) )  e.  RR )
30 climisp.l . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z  /\  ( F `  k )  =/=  A
)  ->  X  <_  ( abs `  ( ( F `  k )  -  A ) ) )
31303expa 1265 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  ( F `  k )  =/=  A )  ->  X  <_  ( abs `  (
( F `  k
)  -  A ) ) )
3215, 29, 31lensymd 10188 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  Z )  /\  ( F `  k )  =/=  A )  ->  -.  ( abs `  ( ( F `  k )  -  A ) )  <  X )
3312, 32sylan2 491 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  ( F `  k )  =  A )  ->  -.  ( abs `  (
( F `  k
)  -  A ) )  <  X )
34333adantl3 1219 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
X )  /\  -.  ( F `  k )  =  A )  ->  -.  ( abs `  (
( F `  k
)  -  A ) )  <  X )
3511, 34condan 835 . . . 4  |-  ( (
ph  /\  k  e.  Z  /\  ( abs `  (
( F `  k
)  -  A ) )  <  X )  ->  ( F `  k )  =  A )
364, 7, 10, 35syl3anc 1326 . . 3  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  A. k  e.  (
ZZ>= `  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  X ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( F `  k )  =  A )
373, 36ralrimia 39315 . 2  |-  ( ( ( ph  /\  j  e.  Z )  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
X ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  =  A )
38 breq2 4657 . . . . . 6  |-  ( x  =  X  ->  (
( abs `  (
( F `  k
)  -  A ) )  <  x  <->  ( abs `  ( ( F `  k )  -  A
) )  <  X
) )
3938anbi2d 740 . . . . 5  |-  ( x  =  X  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <-> 
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  X ) ) )
4039rexralbidv 3058 . . . 4  |-  ( x  =  X  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  X ) ) )
4124simprd 479 . . . 4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x ) )
4240, 41, 13rspcdva 3316 . . 3  |-  ( ph  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
X ) )
43 climisp.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
445rexuz3 14088 . . . 4  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  X )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  X ) ) )
4543, 44syl 17 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  X )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
X ) ) )
4642, 45mpbird 247 . 2  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  X ) )
4737, 46reximddv3 39343 1  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    < clt 10074    <_ cle 10075    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator