Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrescn Structured version   Visualization version   Unicode version

Theorem climrescn 39980
Description: A sequence converging w.r.t. the standard topology on the complex numbers, eventually becomes a sequence of complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climrescn.m  |-  ( ph  ->  M  e.  ZZ )
climrescn.z  |-  Z  =  ( ZZ>= `  M )
climrescn.f  |-  ( ph  ->  F  Fn  Z )
climrescn.c  |-  ( ph  ->  F  e.  dom  ~~>  )
Assertion
Ref Expression
climrescn  |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> CC )
Distinct variable groups:    j, F    j, Z
Allowed substitution hints:    ph( j)    M( j)

Proof of Theorem climrescn
Dummy variables  i 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . . 6  |-  F/ k ( ph  /\  i  e.  Z )
2 nfra1 2941 . . . . . 6  |-  F/ k A. k  e.  (
ZZ>= `  i ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 )
31, 2nfan 1828 . . . . 5  |-  F/ k ( ( ph  /\  i  e.  Z )  /\  A. k  e.  (
ZZ>= `  i ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 ) )
4 climrescn.z . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
54uztrn2 11705 . . . . . . . . 9  |-  ( ( i  e.  Z  /\  k  e.  ( ZZ>= `  i ) )  -> 
k  e.  Z )
65adantll 750 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( ZZ>= `  i )
)  ->  k  e.  Z )
7 climrescn.f . . . . . . . . . 10  |-  ( ph  ->  F  Fn  Z )
87fndmd 39441 . . . . . . . . 9  |-  ( ph  ->  dom  F  =  Z )
98ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( ZZ>= `  i )
)  ->  dom  F  =  Z )
106, 9eleqtrrd 2704 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( ZZ>= `  i )
)  ->  k  e.  dom  F )
1110adantlr 751 . . . . . 6  |-  ( ( ( ( ph  /\  i  e.  Z )  /\  A. k  e.  (
ZZ>= `  i ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 ) )  /\  k  e.  ( ZZ>= `  i ) )  -> 
k  e.  dom  F
)
12 rspa 2930 . . . . . . . . 9  |-  ( ( A. k  e.  (
ZZ>= `  i ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 )  /\  k  e.  ( ZZ>= `  i )
)  ->  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F ) ) )  <  1 ) )
1312adantll 750 . . . . . . . 8  |-  ( ( ( i  e.  Z  /\  A. k  e.  (
ZZ>= `  i ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 ) )  /\  k  e.  ( ZZ>= `  i ) )  -> 
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  (  ~~>  `  F
) ) )  <  1 ) )
1413simpld 475 . . . . . . 7  |-  ( ( ( i  e.  Z  /\  A. k  e.  (
ZZ>= `  i ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 ) )  /\  k  e.  ( ZZ>= `  i ) )  -> 
( F `  k
)  e.  CC )
1514adantlll 754 . . . . . 6  |-  ( ( ( ( ph  /\  i  e.  Z )  /\  A. k  e.  (
ZZ>= `  i ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 ) )  /\  k  e.  ( ZZ>= `  i ) )  -> 
( F `  k
)  e.  CC )
1611, 15jca 554 . . . . 5  |-  ( ( ( ( ph  /\  i  e.  Z )  /\  A. k  e.  (
ZZ>= `  i ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 ) )  /\  k  e.  ( ZZ>= `  i ) )  -> 
( k  e.  dom  F  /\  ( F `  k )  e.  CC ) )
173, 16ralrimia 39315 . . . 4  |-  ( ( ( ph  /\  i  e.  Z )  /\  A. k  e.  ( ZZ>= `  i ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  1 ) )  ->  A. k  e.  ( ZZ>= `  i )
( k  e.  dom  F  /\  ( F `  k )  e.  CC ) )
18 fnfun 5988 . . . . . 6  |-  ( F  Fn  Z  ->  Fun  F )
19 ffvresb 6394 . . . . . 6  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  i
) ) : (
ZZ>= `  i ) --> CC  <->  A. k  e.  ( ZZ>= `  i ) ( k  e.  dom  F  /\  ( F `  k )  e.  CC ) ) )
207, 18, 193syl 18 . . . . 5  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  i )
) : ( ZZ>= `  i ) --> CC  <->  A. k  e.  ( ZZ>= `  i )
( k  e.  dom  F  /\  ( F `  k )  e.  CC ) ) )
2120ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  i  e.  Z )  /\  A. k  e.  ( ZZ>= `  i ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  1 ) )  ->  ( ( F  |`  ( ZZ>= `  i
) ) : (
ZZ>= `  i ) --> CC  <->  A. k  e.  ( ZZ>= `  i ) ( k  e.  dom  F  /\  ( F `  k )  e.  CC ) ) )
2217, 21mpbird 247 . . 3  |-  ( ( ( ph  /\  i  e.  Z )  /\  A. k  e.  ( ZZ>= `  i ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  1 ) )  ->  ( F  |`  ( ZZ>= `  i )
) : ( ZZ>= `  i ) --> CC )
23 breq2 4657 . . . . . . 7  |-  ( x  =  1  ->  (
( abs `  (
( F `  k
)  -  (  ~~>  `  F
) ) )  < 
x  <->  ( abs `  (
( F `  k
)  -  (  ~~>  `  F
) ) )  <  1 ) )
2423anbi2d 740 . . . . . 6  |-  ( x  =  1  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  (  ~~>  `  F
) ) )  < 
x )  <->  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F ) ) )  <  1 ) ) )
2524rexralbidv 3058 . . . . 5  |-  ( x  =  1  ->  ( E. i  e.  ZZ  A. k  e.  ( ZZ>= `  i ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  x )  <->  E. i  e.  ZZ  A. k  e.  ( ZZ>= `  i ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  1 ) ) )
26 climrescn.c . . . . . . . 8  |-  ( ph  ->  F  e.  dom  ~~>  )
27 climdm 14285 . . . . . . . 8  |-  ( F  e.  dom  ~~>  <->  F  ~~>  (  ~~>  `  F
) )
2826, 27sylib 208 . . . . . . 7  |-  ( ph  ->  F  ~~>  (  ~~>  `  F
) )
29 eqidd 2623 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( F `
 k )  =  ( F `  k
) )
3026, 29clim 14225 . . . . . . 7  |-  ( ph  ->  ( F  ~~>  (  ~~>  `  F
)  <->  ( (  ~~>  `  F
)  e.  CC  /\  A. x  e.  RR+  E. i  e.  ZZ  A. k  e.  ( ZZ>= `  i )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  (  ~~>  `  F
) ) )  < 
x ) ) ) )
3128, 30mpbid 222 . . . . . 6  |-  ( ph  ->  ( (  ~~>  `  F
)  e.  CC  /\  A. x  e.  RR+  E. i  e.  ZZ  A. k  e.  ( ZZ>= `  i )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  (  ~~>  `  F
) ) )  < 
x ) ) )
3231simprd 479 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  E. i  e.  ZZ  A. k  e.  ( ZZ>= `  i ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  x ) )
33 1rp 11836 . . . . . 6  |-  1  e.  RR+
3433a1i 11 . . . . 5  |-  ( ph  ->  1  e.  RR+ )
3525, 32, 34rspcdva 3316 . . . 4  |-  ( ph  ->  E. i  e.  ZZ  A. k  e.  ( ZZ>= `  i ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  1 ) )
36 climrescn.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
374rexuz3 14088 . . . . 5  |-  ( M  e.  ZZ  ->  ( E. i  e.  Z  A. k  e.  ( ZZ>=
`  i ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 )  <->  E. i  e.  ZZ  A. k  e.  ( ZZ>= `  i )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  (  ~~>  `  F
) ) )  <  1 ) ) )
3836, 37syl 17 . . . 4  |-  ( ph  ->  ( E. i  e.  Z  A. k  e.  ( ZZ>= `  i )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  (  ~~>  `  F
) ) )  <  1 )  <->  E. i  e.  ZZ  A. k  e.  ( ZZ>= `  i )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  (  ~~>  `  F
) ) )  <  1 ) ) )
3935, 38mpbird 247 . . 3  |-  ( ph  ->  E. i  e.  Z  A. k  e.  ( ZZ>=
`  i ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 ) )
4022, 39reximddv3 39343 . 2  |-  ( ph  ->  E. i  e.  Z  ( F  |`  ( ZZ>= `  i ) ) : ( ZZ>= `  i ) --> CC )
41 fveq2 6191 . . . . 5  |-  ( j  =  i  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  i )
)
4241reseq2d 5396 . . . 4  |-  ( j  =  i  ->  ( F  |`  ( ZZ>= `  j
) )  =  ( F  |`  ( ZZ>= `  i ) ) )
4342, 41feq12d 6033 . . 3  |-  ( j  =  i  ->  (
( F  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> CC  <->  ( F  |`  ( ZZ>= `  i )
) : ( ZZ>= `  i ) --> CC ) )
4443cbvrexv 3172 . 2  |-  ( E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> CC 
<->  E. i  e.  Z  ( F  |`  ( ZZ>= `  i ) ) : ( ZZ>= `  i ) --> CC )
4540, 44sylibr 224 1  |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   dom cdm 5114    |` cres 5116   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    < clt 10074    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  climxlim2  40072
  Copyright terms: Public domain W3C validator