Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexsb Structured version   Visualization version   Unicode version

Theorem rexsb 41168
Description: An equivalent expression for restricted existence, analogous to exsb 2468. (Contributed by Alexander van der Vekens, 1-Jul-2017.)
Assertion
Ref Expression
rexsb  |-  ( E. x  e.  A  ph  <->  E. y  e.  A  A. x ( x  =  y  ->  ph ) )
Distinct variable groups:    x, y, A    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem rexsb
StepHypRef Expression
1 nfv 1843 . 2  |-  F/ y
ph
2 nfa1 2028 . 2  |-  F/ x A. x ( x  =  y  ->  ph )
3 ax12v 2048 . . 3  |-  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) )
4 sp 2053 . . . 4  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
54com12 32 . . 3  |-  ( x  =  y  ->  ( A. x ( x  =  y  ->  ph )  ->  ph ) )
63, 5impbid 202 . 2  |-  ( x  =  y  ->  ( ph 
<-> 
A. x ( x  =  y  ->  ph )
) )
71, 2, 6cbvrex 3168 1  |-  ( E. x  e.  A  ph  <->  E. y  e.  A  A. x ( x  =  y  ->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   E.wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918
This theorem is referenced by:  rexrsb  41169  2rexsb  41170
  Copyright terms: Public domain W3C validator