MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reeff1o Structured version   Visualization version   Unicode version

Theorem reeff1o 24201
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+

Proof of Theorem reeff1o
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 14850 . 2  |-  ( exp  |`  RR ) : RR -1-1-> RR+
2 f1f 6101 . . . 4  |-  ( ( exp  |`  RR ) : RR -1-1-> RR+  ->  ( exp  |`  RR ) : RR --> RR+ )
3 ffn 6045 . . . 4  |-  ( ( exp  |`  RR ) : RR --> RR+  ->  ( exp  |`  RR )  Fn  RR )
41, 2, 3mp2b 10 . . 3  |-  ( exp  |`  RR )  Fn  RR
5 frn 6053 . . . . 5  |-  ( ( exp  |`  RR ) : RR --> RR+  ->  ran  ( exp  |`  RR )  C_  RR+ )
61, 2, 5mp2b 10 . . . 4  |-  ran  ( exp  |`  RR )  C_  RR+
7 elrp 11834 . . . . . . . . . . 11  |-  ( z  e.  RR+  <->  ( z  e.  RR  /\  0  < 
z ) )
8 reclt1 10918 . . . . . . . . . . 11  |-  ( ( z  e.  RR  /\  0  <  z )  -> 
( z  <  1  <->  1  <  ( 1  / 
z ) ) )
97, 8sylbi 207 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  ( z  <  1  <->  1  <  ( 1  /  z ) ) )
10 rpre 11839 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR+  ->  z  e.  RR )
11 rpne0 11848 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR+  ->  z  =/=  0 )
1210, 11rereccld 10852 . . . . . . . . . . . . . 14  |-  ( z  e.  RR+  ->  ( 1  /  z )  e.  RR )
13 reeff1olem 24200 . . . . . . . . . . . . . 14  |-  ( ( ( 1  /  z
)  e.  RR  /\  1  <  ( 1  / 
z ) )  ->  E. y  e.  RR  ( exp `  y )  =  ( 1  / 
z ) )
1412, 13sylan 488 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR+  /\  1  <  ( 1  /  z
) )  ->  E. y  e.  RR  ( exp `  y
)  =  ( 1  /  z ) )
15 eqcom 2629 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  /  z )  =  ( exp `  y
)  <->  ( exp `  y
)  =  ( 1  /  z ) )
16 rpcnne0 11850 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  RR+  ->  ( z  e.  CC  /\  z  =/=  0 ) )
17 recn 10026 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR  ->  y  e.  CC )
18 efcl 14813 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  CC  ->  ( exp `  y )  e.  CC )
1917, 18syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  RR  ->  ( exp `  y )  e.  CC )
20 efne0 14827 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  CC  ->  ( exp `  y )  =/=  0 )
2117, 20syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  RR  ->  ( exp `  y )  =/=  0 )
2219, 21jca 554 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  RR  ->  (
( exp `  y
)  e.  CC  /\  ( exp `  y )  =/=  0 ) )
23 rec11r 10724 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  CC  /\  z  =/=  0 )  /\  ( ( exp `  y )  e.  CC  /\  ( exp `  y
)  =/=  0 ) )  ->  ( (
1  /  z )  =  ( exp `  y
)  <->  ( 1  / 
( exp `  y
) )  =  z ) )
2416, 22, 23syl2an 494 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  RR+  /\  y  e.  RR )  ->  (
( 1  /  z
)  =  ( exp `  y )  <->  ( 1  /  ( exp `  y
) )  =  z ) )
25 efcan 14826 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  CC  ->  (
( exp `  y
)  x.  ( exp `  -u y ) )  =  1 )
2625eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  CC  ->  1  =  ( ( exp `  y )  x.  ( exp `  -u y ) ) )
27 negcl 10281 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  CC  ->  -u y  e.  CC )
28 efcl 14813 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -u y  e.  CC  ->  ( exp `  -u y
)  e.  CC )
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  CC  ->  ( exp `  -u y )  e.  CC )
30 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  CC
31 divmul2 10689 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1  e.  CC  /\  ( exp `  -u y
)  e.  CC  /\  ( ( exp `  y
)  e.  CC  /\  ( exp `  y )  =/=  0 ) )  ->  ( ( 1  /  ( exp `  y
) )  =  ( exp `  -u y
)  <->  1  =  ( ( exp `  y
)  x.  ( exp `  -u y ) ) ) )
3230, 31mp3an1 1411 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( exp `  -u y
)  e.  CC  /\  ( ( exp `  y
)  e.  CC  /\  ( exp `  y )  =/=  0 ) )  ->  ( ( 1  /  ( exp `  y
) )  =  ( exp `  -u y
)  <->  1  =  ( ( exp `  y
)  x.  ( exp `  -u y ) ) ) )
3329, 18, 20, 32syl12anc 1324 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  CC  ->  (
( 1  /  ( exp `  y ) )  =  ( exp `  -u y
)  <->  1  =  ( ( exp `  y
)  x.  ( exp `  -u y ) ) ) )
3426, 33mpbird 247 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  CC  ->  (
1  /  ( exp `  y ) )  =  ( exp `  -u y
) )
3517, 34syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  RR  ->  (
1  /  ( exp `  y ) )  =  ( exp `  -u y
) )
3635eqeq1d 2624 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  RR  ->  (
( 1  /  ( exp `  y ) )  =  z  <->  ( exp `  -u y )  =  z ) )
3736adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  RR+  /\  y  e.  RR )  ->  (
( 1  /  ( exp `  y ) )  =  z  <->  ( exp `  -u y )  =  z ) )
3824, 37bitrd 268 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  RR+  /\  y  e.  RR )  ->  (
( 1  /  z
)  =  ( exp `  y )  <->  ( exp `  -u y )  =  z ) )
3915, 38syl5bbr 274 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  RR+  /\  y  e.  RR )  ->  (
( exp `  y
)  =  ( 1  /  z )  <->  ( exp `  -u y )  =  z ) )
4039biimpd 219 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  RR+  /\  y  e.  RR )  ->  (
( exp `  y
)  =  ( 1  /  z )  -> 
( exp `  -u y
)  =  z ) )
4140reximdva 3017 . . . . . . . . . . . . . 14  |-  ( z  e.  RR+  ->  ( E. y  e.  RR  ( exp `  y )  =  ( 1  /  z
)  ->  E. y  e.  RR  ( exp `  -u y
)  =  z ) )
4241adantr 481 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR+  /\  1  <  ( 1  /  z
) )  ->  ( E. y  e.  RR  ( exp `  y )  =  ( 1  / 
z )  ->  E. y  e.  RR  ( exp `  -u y
)  =  z ) )
4314, 42mpd 15 . . . . . . . . . . . 12  |-  ( ( z  e.  RR+  /\  1  <  ( 1  /  z
) )  ->  E. y  e.  RR  ( exp `  -u y
)  =  z )
44 renegcl 10344 . . . . . . . . . . . . 13  |-  ( y  e.  RR  ->  -u y  e.  RR )
45 infm3lem 10981 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  E. y  e.  RR  x  =  -u y )
46 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( x  =  -u y  ->  ( exp `  x )  =  ( exp `  -u y
) )
4746eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  (
( exp `  x
)  =  z  <->  ( exp `  -u y )  =  z ) )
4844, 45, 47rexxfr 4888 . . . . . . . . . . . 12  |-  ( E. x  e.  RR  ( exp `  x )  =  z  <->  E. y  e.  RR  ( exp `  -u y
)  =  z )
4943, 48sylibr 224 . . . . . . . . . . 11  |-  ( ( z  e.  RR+  /\  1  <  ( 1  /  z
) )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
5049ex 450 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  ( 1  <  ( 1  / 
z )  ->  E. x  e.  RR  ( exp `  x
)  =  z ) )
519, 50sylbid 230 . . . . . . . . 9  |-  ( z  e.  RR+  ->  ( z  <  1  ->  E. x  e.  RR  ( exp `  x
)  =  z ) )
5251imp 445 . . . . . . . 8  |-  ( ( z  e.  RR+  /\  z  <  1 )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
53 ef0 14821 . . . . . . . . . . 11  |-  ( exp `  0 )  =  1
5453eqeq2i 2634 . . . . . . . . . 10  |-  ( z  =  ( exp `  0
)  <->  z  =  1 )
55 0re 10040 . . . . . . . . . . . 12  |-  0  e.  RR
56 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( x  =  0  ->  ( exp `  x )  =  ( exp `  0
) )
5756eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
( exp `  x
)  =  z  <->  ( exp `  0 )  =  z ) )
5857rspcev 3309 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  ( exp `  0 )  =  z )  ->  E. x  e.  RR  ( exp `  x )  =  z )
5955, 58mpan 706 . . . . . . . . . . 11  |-  ( ( exp `  0 )  =  z  ->  E. x  e.  RR  ( exp `  x
)  =  z )
6059eqcoms 2630 . . . . . . . . . 10  |-  ( z  =  ( exp `  0
)  ->  E. x  e.  RR  ( exp `  x
)  =  z )
6154, 60sylbir 225 . . . . . . . . 9  |-  ( z  =  1  ->  E. x  e.  RR  ( exp `  x
)  =  z )
6261adantl 482 . . . . . . . 8  |-  ( ( z  e.  RR+  /\  z  =  1 )  ->  E. x  e.  RR  ( exp `  x )  =  z )
63 reeff1olem 24200 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  1  <  z )  ->  E. x  e.  RR  ( exp `  x )  =  z )
6410, 63sylan 488 . . . . . . . 8  |-  ( ( z  e.  RR+  /\  1  <  z )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
65 1re 10039 . . . . . . . . 9  |-  1  e.  RR
66 lttri4 10122 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  1  e.  RR )  ->  ( z  <  1  \/  z  =  1  \/  1  <  z ) )
6710, 65, 66sylancl 694 . . . . . . . 8  |-  ( z  e.  RR+  ->  ( z  <  1  \/  z  =  1  \/  1  <  z ) )
6852, 62, 64, 67mpjao3dan 1395 . . . . . . 7  |-  ( z  e.  RR+  ->  E. x  e.  RR  ( exp `  x
)  =  z )
69 fvres 6207 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( exp  |`  RR ) `
 x )  =  ( exp `  x
) )
7069eqeq1d 2624 . . . . . . . 8  |-  ( x  e.  RR  ->  (
( ( exp  |`  RR ) `
 x )  =  z  <->  ( exp `  x
)  =  z ) )
7170rexbiia 3040 . . . . . . 7  |-  ( E. x  e.  RR  (
( exp  |`  RR ) `
 x )  =  z  <->  E. x  e.  RR  ( exp `  x )  =  z )
7268, 71sylibr 224 . . . . . 6  |-  ( z  e.  RR+  ->  E. x  e.  RR  ( ( exp  |`  RR ) `  x
)  =  z )
73 fvelrnb 6243 . . . . . . 7  |-  ( ( exp  |`  RR )  Fn  RR  ->  ( z  e.  ran  ( exp  |`  RR )  <->  E. x  e.  RR  ( ( exp  |`  RR ) `
 x )  =  z ) )
744, 73ax-mp 5 . . . . . 6  |-  ( z  e.  ran  ( exp  |`  RR )  <->  E. x  e.  RR  ( ( exp  |`  RR ) `  x
)  =  z )
7572, 74sylibr 224 . . . . 5  |-  ( z  e.  RR+  ->  z  e. 
ran  ( exp  |`  RR ) )
7675ssriv 3607 . . . 4  |-  RR+  C_  ran  ( exp  |`  RR )
776, 76eqssi 3619 . . 3  |-  ran  ( exp  |`  RR )  = 
RR+
78 df-fo 5894 . . 3  |-  ( ( exp  |`  RR ) : RR -onto-> RR+  <->  ( ( exp  |`  RR )  Fn  RR  /\ 
ran  ( exp  |`  RR )  =  RR+ ) )
794, 77, 78mpbir2an 955 . 2  |-  ( exp  |`  RR ) : RR -onto-> RR+
80 df-f1o 5895 . 2  |-  ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  <->  ( ( exp  |`  RR ) : RR -1-1-> RR+ 
/\  ( exp  |`  RR ) : RR -onto-> RR+ )
)
811, 79, 80mpbir2an 955 1  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    C_ wss 3574   class class class wbr 4653   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074   -ucneg 10267    / cdiv 10684   RR+crp 11832   expce 14792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  reefiso  24202  efcvx  24203  reefgim  24204  eff1olem  24294  dfrelog  24312  relogf1o  24313  dvrelog  24383
  Copyright terms: Public domain W3C validator