| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrerintcl | Structured version Visualization version Unicode version | ||
| Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| mrerintcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rint0 4517 |
. . . 4
| |
| 2 | 1 | adantl 482 |
. . 3
|
| 3 | mre1cl 16254 |
. . . 4
| |
| 4 | 3 | ad2antrr 762 |
. . 3
|
| 5 | 2, 4 | eqeltrd 2701 |
. 2
|
| 6 | simp2 1062 |
. . . . . 6
| |
| 7 | mresspw 16252 |
. . . . . . 7
| |
| 8 | 7 | 3ad2ant1 1082 |
. . . . . 6
|
| 9 | 6, 8 | sstrd 3613 |
. . . . 5
|
| 10 | simp3 1063 |
. . . . 5
| |
| 11 | rintn0 4619 |
. . . . 5
| |
| 12 | 9, 10, 11 | syl2anc 693 |
. . . 4
|
| 13 | mreintcl 16255 |
. . . 4
| |
| 14 | 12, 13 | eqeltrd 2701 |
. . 3
|
| 15 | 14 | 3expa 1265 |
. 2
|
| 16 | 5, 15 | pm2.61dane 2881 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-mre 16246 |
| This theorem is referenced by: mreacs 16319 topmtcl 32358 |
| Copyright terms: Public domain | W3C validator |