MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrerintcl Structured version   Visualization version   Unicode version

Theorem mrerintcl 16257
Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mrerintcl  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C )  ->  ( X  i^i  |^| S )  e.  C )

Proof of Theorem mrerintcl
StepHypRef Expression
1 rint0 4517 . . . 4  |-  ( S  =  (/)  ->  ( X  i^i  |^| S )  =  X )
21adantl 482 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  S  C_  C )  /\  S  =  (/) )  ->  ( X  i^i  |^| S )  =  X )
3 mre1cl 16254 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
43ad2antrr 762 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  S  C_  C )  /\  S  =  (/) )  ->  X  e.  C )
52, 4eqeltrd 2701 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  S  C_  C )  /\  S  =  (/) )  ->  ( X  i^i  |^| S )  e.  C )
6 simp2 1062 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C  /\  S  =/=  (/) )  ->  S  C_  C )
7 mresspw 16252 . . . . . . 7  |-  ( C  e.  (Moore `  X
)  ->  C  C_  ~P X )
873ad2ant1 1082 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C  /\  S  =/=  (/) )  ->  C  C_  ~P X )
96, 8sstrd 3613 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C  /\  S  =/=  (/) )  ->  S  C_  ~P X )
10 simp3 1063 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C  /\  S  =/=  (/) )  ->  S  =/=  (/) )
11 rintn0 4619 . . . . 5  |-  ( ( S  C_  ~P X  /\  S  =/=  (/) )  -> 
( X  i^i  |^| S )  =  |^| S )
129, 10, 11syl2anc 693 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C  /\  S  =/=  (/) )  ->  ( X  i^i  |^| S )  = 
|^| S )
13 mreintcl 16255 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C  /\  S  =/=  (/) )  ->  |^| S  e.  C )
1412, 13eqeltrd 2701 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C  /\  S  =/=  (/) )  ->  ( X  i^i  |^| S )  e.  C )
15143expa 1265 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  S  C_  C )  /\  S  =/=  (/) )  ->  ( X  i^i  |^| S )  e.  C )
165, 15pm2.61dane 2881 1  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C )  ->  ( X  i^i  |^| S )  e.  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   |^|cint 4475   ` cfv 5888  Moorecmre 16242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-mre 16246
This theorem is referenced by:  mreacs  16319  topmtcl  32358
  Copyright terms: Public domain W3C validator