Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspceaov Structured version   Visualization version   Unicode version

Theorem rspceaov 41277
Description: A frequently used special case of rspc2ev 3324 for operation values, analogous to rspceov 6692. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
rspceaov  |-  ( ( C  e.  A  /\  D  e.  B  /\  S  = (( C F D))  )  ->  E. x  e.  A  E. y  e.  B  S  = (( x F y))  )
Distinct variable groups:    x, A    x, y, B    x, C, y    y, D    x, F, y    x, S, y
Allowed substitution hints:    A( y)    D( x)

Proof of Theorem rspceaov
StepHypRef Expression
1 eqidd 2623 . . . 4  |-  ( x  =  C  ->  F  =  F )
2 id 22 . . . 4  |-  ( x  =  C  ->  x  =  C )
3 eqidd 2623 . . . 4  |-  ( x  =  C  ->  y  =  y )
41, 2, 3aoveq123d 41258 . . 3  |-  ( x  =  C  -> (( x F y))  = (( C F y))  )
54eqeq2d 2632 . 2  |-  ( x  =  C  ->  ( S  = (( x F
y)) 
<->  S  = (( C F y))  ) )
6 eqidd 2623 . . . 4  |-  ( y  =  D  ->  F  =  F )
7 eqidd 2623 . . . 4  |-  ( y  =  D  ->  C  =  C )
8 id 22 . . . 4  |-  ( y  =  D  ->  y  =  D )
96, 7, 8aoveq123d 41258 . . 3  |-  ( y  =  D  -> (( C F y))  = (( C F D))  )
109eqeq2d 2632 . 2  |-  ( y  =  D  ->  ( S  = (( C F
y)) 
<->  S  = (( C F D))  ) )
115, 10rspc2ev 3324 1  |-  ( ( C  e.  A  /\  D  e.  B  /\  S  = (( C F D))  )  ->  E. x  e.  A  E. y  e.  B  S  = (( x F y))  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   ((caov 41195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-dfat 41196  df-afv 41197  df-aov 41198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator