Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aoveq123d Structured version   Visualization version   Unicode version

Theorem aoveq123d 41258
Description: Equality deduction for operation value, analogous to oveq123d 6671. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
aoveq123d.1  |-  ( ph  ->  F  =  G )
aoveq123d.2  |-  ( ph  ->  A  =  B )
aoveq123d.3  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
aoveq123d  |-  ( ph  -> (( A F C))  = (( B G D))  )

Proof of Theorem aoveq123d
StepHypRef Expression
1 aoveq123d.1 . . 3  |-  ( ph  ->  F  =  G )
2 aoveq123d.2 . . . 4  |-  ( ph  ->  A  =  B )
3 aoveq123d.3 . . . 4  |-  ( ph  ->  C  =  D )
42, 3opeq12d 4410 . . 3  |-  ( ph  -> 
<. A ,  C >.  = 
<. B ,  D >. )
51, 4afveq12d 41213 . 2  |-  ( ph  ->  ( F''' <. A ,  C >. )  =  ( G''' <. B ,  D >. ) )
6 df-aov 41198 . 2  |- (( A F C))  =  ( F''' <. A ,  C >. )
7 df-aov 41198 . 2  |- (( B G D))  =  ( G''' <. B ,  D >. )
85, 6, 73eqtr4g 2681 1  |-  ( ph  -> (( A F C))  = (( B G D))  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   <.cop 4183  '''cafv 41194   ((caov 41195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-dfat 41196  df-afv 41197  df-aov 41198
This theorem is referenced by:  csbaovg  41260  rspceaov  41277  faovcl  41280
  Copyright terms: Public domain W3C validator