| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbal2 | Structured version Visualization version Unicode version | ||
| Description: Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.) Remove a distinct variable constraint. (Revised by Wolf Lammen, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| sbal2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb4b 2358 |
. . . . 5
| |
| 2 | 1 | adantl 482 |
. . . 4
|
| 3 | nfnae 2318 |
. . . . . 6
| |
| 4 | sb4b 2358 |
. . . . . 6
| |
| 5 | 3, 4 | albid 2090 |
. . . . 5
|
| 6 | alcom 2037 |
. . . . . 6
| |
| 7 | nfnae 2318 |
. . . . . . 7
| |
| 8 | nfeqf1 2299 |
. . . . . . . 8
| |
| 9 | 19.21t 2073 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
|
| 11 | 7, 10 | albid 2090 |
. . . . . 6
|
| 12 | 6, 11 | syl5bb 272 |
. . . . 5
|
| 13 | 5, 12 | sylan9bbr 737 |
. . . 4
|
| 14 | 2, 13 | bitr4d 271 |
. . 3
|
| 15 | 14 | ex 450 |
. 2
|
| 16 | sbid 2114 |
. . . 4
| |
| 17 | drsb2 2378 |
. . . 4
| |
| 18 | 16, 17 | syl5bbr 274 |
. . 3
|
| 19 | sbid 2114 |
. . . . 5
| |
| 20 | drsb2 2378 |
. . . . 5
| |
| 21 | 19, 20 | syl5bbr 274 |
. . . 4
|
| 22 | 21 | dral2 2324 |
. . 3
|
| 23 | 18, 22 | bitr3d 270 |
. 2
|
| 24 | 15, 23 | pm2.61d2 172 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: 2sb5ndVD 39146 2sb5ndALT 39168 |
| Copyright terms: Public domain | W3C validator |