MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbal2 Structured version   Visualization version   Unicode version

Theorem sbal2 2461
Description: Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.) Remove a distinct variable constraint. (Revised by Wolf Lammen, 3-Oct-2018.)
Assertion
Ref Expression
sbal2  |-  ( -. 
A. x  x  =  y  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Distinct variable group:    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbal2
StepHypRef Expression
1 sb4b 2358 . . . . 5  |-  ( -. 
A. y  y  =  z  ->  ( [
z  /  y ] A. x ph  <->  A. y
( y  =  z  ->  A. x ph )
) )
21adantl 482 . . . 4  |-  ( ( -.  A. x  x  =  y  /\  -.  A. y  y  =  z )  ->  ( [
z  /  y ] A. x ph  <->  A. y
( y  =  z  ->  A. x ph )
) )
3 nfnae 2318 . . . . . 6  |-  F/ x  -.  A. y  y  =  z
4 sb4b 2358 . . . . . 6  |-  ( -. 
A. y  y  =  z  ->  ( [
z  /  y ]
ph 
<-> 
A. y ( y  =  z  ->  ph )
) )
53, 4albid 2090 . . . . 5  |-  ( -. 
A. y  y  =  z  ->  ( A. x [ z  /  y ] ph  <->  A. x A. y
( y  =  z  ->  ph ) ) )
6 alcom 2037 . . . . . 6  |-  ( A. x A. y ( y  =  z  ->  ph )  <->  A. y A. x ( y  =  z  ->  ph ) )
7 nfnae 2318 . . . . . . 7  |-  F/ y  -.  A. x  x  =  y
8 nfeqf1 2299 . . . . . . . 8  |-  ( -. 
A. x  x  =  y  ->  F/ x  y  =  z )
9 19.21t 2073 . . . . . . . 8  |-  ( F/ x  y  =  z  ->  ( A. x
( y  =  z  ->  ph )  <->  ( y  =  z  ->  A. x ph ) ) )
108, 9syl 17 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  ( A. x ( y  =  z  ->  ph )  <->  ( y  =  z  ->  A. x ph ) ) )
117, 10albid 2090 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  ( A. y A. x ( y  =  z  ->  ph )  <->  A. y ( y  =  z  ->  A. x ph ) ) )
126, 11syl5bb 272 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  ( A. x A. y ( y  =  z  ->  ph )  <->  A. y ( y  =  z  ->  A. x ph ) ) )
135, 12sylan9bbr 737 . . . 4  |-  ( ( -.  A. x  x  =  y  /\  -.  A. y  y  =  z )  ->  ( A. x [ z  /  y ] ph  <->  A. y ( y  =  z  ->  A. x ph ) ) )
142, 13bitr4d 271 . . 3  |-  ( ( -.  A. x  x  =  y  /\  -.  A. y  y  =  z )  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
1514ex 450 . 2  |-  ( -. 
A. x  x  =  y  ->  ( -.  A. y  y  =  z  ->  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) ) )
16 sbid 2114 . . . 4  |-  ( [ y  /  y ] A. x ph  <->  A. x ph )
17 drsb2 2378 . . . 4  |-  ( A. y  y  =  z  ->  ( [ y  / 
y ] A. x ph 
<->  [ z  /  y ] A. x ph )
)
1816, 17syl5bbr 274 . . 3  |-  ( A. y  y  =  z  ->  ( A. x ph  <->  [ z  /  y ] A. x ph )
)
19 sbid 2114 . . . . 5  |-  ( [ y  /  y ]
ph 
<-> 
ph )
20 drsb2 2378 . . . . 5  |-  ( A. y  y  =  z  ->  ( [ y  / 
y ] ph  <->  [ z  /  y ] ph ) )
2119, 20syl5bbr 274 . . . 4  |-  ( A. y  y  =  z  ->  ( ph  <->  [ z  /  y ] ph ) )
2221dral2 2324 . . 3  |-  ( A. y  y  =  z  ->  ( A. x ph  <->  A. x [ z  / 
y ] ph )
)
2318, 22bitr3d 270 . 2  |-  ( A. y  y  =  z  ->  ( [ z  / 
y ] A. x ph 
<-> 
A. x [ z  /  y ] ph ) )
2415, 23pm2.61d2 172 1  |-  ( -. 
A. x  x  =  y  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   F/wnf 1708   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  2sb5ndVD  39146  2sb5ndALT  39168
  Copyright terms: Public domain W3C validator