Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcaltop Structured version   Visualization version   Unicode version

Theorem sbcaltop 32088
Description: Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.)
Assertion
Ref Expression
sbcaltop  |-  ( A  e.  _V  ->  [_ A  /  x ]_ << C ,  D >>  =  << [_ A  /  x ]_ C ,  [_ A  /  x ]_ D >> )
Distinct variable group:    x, A
Allowed substitution hints:    C( x)    D( x)

Proof of Theorem sbcaltop
StepHypRef Expression
1 nfcsb1v 3549 . . . 4  |-  F/_ x [_ A  /  x ]_ C
2 nfcsb1v 3549 . . . 4  |-  F/_ x [_ A  /  x ]_ D
31, 2nfaltop 32087 . . 3  |-  F/_ x << [_ A  /  x ]_ C ,  [_ A  /  x ]_ D >>
43a1i 11 . 2  |-  ( A  e.  _V  ->  F/_ x << [_ A  /  x ]_ C ,  [_ A  /  x ]_ D >> )
5 csbeq1a 3542 . . . 4  |-  ( x  =  A  ->  C  =  [_ A  /  x ]_ C )
6 altopeq1 32070 . . . 4  |-  ( C  =  [_ A  /  x ]_ C  ->  << C ,  D >>  =  << [_ A  /  x ]_ C ,  D >> )
75, 6syl 17 . . 3  |-  ( x  =  A  ->  << C ,  D >>  =  << [_ A  /  x ]_ C ,  D >> )
8 csbeq1a 3542 . . . 4  |-  ( x  =  A  ->  D  =  [_ A  /  x ]_ D )
9 altopeq2 32071 . . . 4  |-  ( D  =  [_ A  /  x ]_ D  ->  << [_ A  /  x ]_ C ,  D >>  =  << [_ A  /  x ]_ C ,  [_ A  /  x ]_ D >> )
108, 9syl 17 . . 3  |-  ( x  =  A  ->  << [_ A  /  x ]_ C ,  D >>  =  << [_ A  /  x ]_ C ,  [_ A  /  x ]_ D >> )
117, 10eqtrd 2656 . 2  |-  ( x  =  A  ->  << C ,  D >>  =  << [_ A  /  x ]_ C ,  [_ A  /  x ]_ D >> )
124, 11csbiegf 3557 1  |-  ( A  e.  _V  ->  [_ A  /  x ]_ << C ,  D >>  =  << [_ A  /  x ]_ C ,  [_ A  /  x ]_ D >> )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200   [_csb 3533   <<caltop 32063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-altop 32065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator