| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbr123 | Structured version Visualization version Unicode version | ||
| Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Modified by NM, 22-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcbr123 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3445 |
. 2
| |
| 2 | br0 4701 |
. . . 4
| |
| 3 | csbprc 3980 |
. . . . 5
| |
| 4 | 3 | breqd 4664 |
. . . 4
|
| 5 | 2, 4 | mtbiri 317 |
. . 3
|
| 6 | 5 | con4i 113 |
. 2
|
| 7 | dfsbcq2 3438 |
. . 3
| |
| 8 | csbeq1 3536 |
. . . 4
| |
| 9 | csbeq1 3536 |
. . . 4
| |
| 10 | csbeq1 3536 |
. . . 4
| |
| 11 | 8, 9, 10 | breq123d 4667 |
. . 3
|
| 12 | nfcsb1v 3549 |
. . . . 5
| |
| 13 | nfcsb1v 3549 |
. . . . 5
| |
| 14 | nfcsb1v 3549 |
. . . . 5
| |
| 15 | 12, 13, 14 | nfbr 4699 |
. . . 4
|
| 16 | csbeq1a 3542 |
. . . . 5
| |
| 17 | csbeq1a 3542 |
. . . . 5
| |
| 18 | csbeq1a 3542 |
. . . . 5
| |
| 19 | 16, 17, 18 | breq123d 4667 |
. . . 4
|
| 20 | 15, 19 | sbie 2408 |
. . 3
|
| 21 | 7, 11, 20 | vtoclbg 3267 |
. 2
|
| 22 | 1, 6, 21 | pm5.21nii 368 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 |
| This theorem is referenced by: sbcbr 4707 sbcbr12g 4708 csbcnvgALT 5307 sbcfung 5912 csbfv12 6231 relowlpssretop 33212 |
| Copyright terms: Public domain | W3C validator |