| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcco3g | Structured version Visualization version Unicode version | ||
| Description: Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) |
| Ref | Expression |
|---|---|
| sbcco3g.1 |
|
| Ref | Expression |
|---|---|
| sbcco3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcnestg 3997 |
. 2
| |
| 2 | elex 3212 |
. . 3
| |
| 3 | nfcvd 2765 |
. . . 4
| |
| 4 | sbcco3g.1 |
. . . 4
| |
| 5 | 3, 4 | csbiegf 3557 |
. . 3
|
| 6 | dfsbcq 3437 |
. . 3
| |
| 7 | 2, 5, 6 | 3syl 18 |
. 2
|
| 8 | 1, 7 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 |
| This theorem is referenced by: fzshftral 12428 2rexfrabdioph 37360 3rexfrabdioph 37361 4rexfrabdioph 37362 6rexfrabdioph 37363 7rexfrabdioph 37364 |
| Copyright terms: Public domain | W3C validator |