| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzshftral | Structured version Visualization version Unicode version | ||
| Description: Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.) |
| Ref | Expression |
|---|---|
| fzshftral |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 11388 |
. . . 4
| |
| 2 | fzrevral 12425 |
. . . 4
| |
| 3 | 1, 2 | mp3an3 1413 |
. . 3
|
| 4 | 3 | 3adant3 1081 |
. 2
|
| 5 | zsubcl 11419 |
. . . . 5
| |
| 6 | 1, 5 | mpan 706 |
. . . 4
|
| 7 | zsubcl 11419 |
. . . . 5
| |
| 8 | 1, 7 | mpan 706 |
. . . 4
|
| 9 | id 22 |
. . . 4
| |
| 10 | fzrevral 12425 |
. . . 4
| |
| 11 | 6, 8, 9, 10 | syl3an 1368 |
. . 3
|
| 12 | 11 | 3com12 1269 |
. 2
|
| 13 | ovex 6678 |
. . . . 5
| |
| 14 | oveq2 6658 |
. . . . . 6
| |
| 15 | 14 | sbcco3g 3999 |
. . . . 5
|
| 16 | 13, 15 | ax-mp 5 |
. . . 4
|
| 17 | 16 | ralbii 2980 |
. . 3
|
| 18 | zcn 11382 |
. . . . . 6
| |
| 19 | zcn 11382 |
. . . . . 6
| |
| 20 | zcn 11382 |
. . . . . 6
| |
| 21 | df-neg 10269 |
. . . . . . . . . . 11
| |
| 22 | 21 | oveq2i 6661 |
. . . . . . . . . 10
|
| 23 | subneg 10330 |
. . . . . . . . . . 11
| |
| 24 | addcom 10222 |
. . . . . . . . . . 11
| |
| 25 | 23, 24 | eqtrd 2656 |
. . . . . . . . . 10
|
| 26 | 22, 25 | syl5eqr 2670 |
. . . . . . . . 9
|
| 27 | 26 | 3adant3 1081 |
. . . . . . . 8
|
| 28 | df-neg 10269 |
. . . . . . . . . . 11
| |
| 29 | 28 | oveq2i 6661 |
. . . . . . . . . 10
|
| 30 | subneg 10330 |
. . . . . . . . . . 11
| |
| 31 | addcom 10222 |
. . . . . . . . . . 11
| |
| 32 | 30, 31 | eqtrd 2656 |
. . . . . . . . . 10
|
| 33 | 29, 32 | syl5eqr 2670 |
. . . . . . . . 9
|
| 34 | 33 | 3adant2 1080 |
. . . . . . . 8
|
| 35 | 27, 34 | oveq12d 6668 |
. . . . . . 7
|
| 36 | 35 | 3coml 1272 |
. . . . . 6
|
| 37 | 18, 19, 20, 36 | syl3an 1368 |
. . . . 5
|
| 38 | 37 | raleqdv 3144 |
. . . 4
|
| 39 | elfzelz 12342 |
. . . . . . . . 9
| |
| 40 | 39 | zcnd 11483 |
. . . . . . . 8
|
| 41 | df-neg 10269 |
. . . . . . . . 9
| |
| 42 | negsubdi2 10340 |
. . . . . . . . 9
| |
| 43 | 41, 42 | syl5eqr 2670 |
. . . . . . . 8
|
| 44 | 20, 40, 43 | syl2an 494 |
. . . . . . 7
|
| 45 | 44 | sbceq1d 3440 |
. . . . . 6
|
| 46 | 45 | ralbidva 2985 |
. . . . 5
|
| 47 | 46 | 3ad2ant3 1084 |
. . . 4
|
| 48 | 38, 47 | bitrd 268 |
. . 3
|
| 49 | 17, 48 | syl5bb 272 |
. 2
|
| 50 | 4, 12, 49 | 3bitrd 294 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 |
| This theorem is referenced by: fzoshftral 12585 fprodser 14679 prmgaplem7 15761 poimirlem27 33436 |
| Copyright terms: Public domain | W3C validator |