| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbccomlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for sbccom 3509. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbccomlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom 2042 |
. . . 4
| |
| 2 | exdistr 1919 |
. . . 4
| |
| 3 | an12 838 |
. . . . . . 7
| |
| 4 | 3 | exbii 1774 |
. . . . . 6
|
| 5 | 19.42v 1918 |
. . . . . 6
| |
| 6 | 4, 5 | bitri 264 |
. . . . 5
|
| 7 | 6 | exbii 1774 |
. . . 4
|
| 8 | 1, 2, 7 | 3bitr3i 290 |
. . 3
|
| 9 | sbc5 3460 |
. . 3
| |
| 10 | sbc5 3460 |
. . 3
| |
| 11 | 8, 9, 10 | 3bitr4i 292 |
. 2
|
| 12 | sbc5 3460 |
. . 3
| |
| 13 | 12 | sbcbii 3491 |
. 2
|
| 14 | sbc5 3460 |
. . 3
| |
| 15 | 14 | sbcbii 3491 |
. 2
|
| 16 | 11, 13, 15 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: sbccom 3509 |
| Copyright terms: Public domain | W3C validator |