| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovmpt2rdxf | Structured version Visualization version Unicode version | ||
| Description: Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpt2dxf 6786. (Contributed by AV, 30-Mar-2019.) |
| Ref | Expression |
|---|---|
| ovmpt2rdx.1 |
|
| ovmpt2rdx.2 |
|
| ovmpt2rdx.3 |
|
| ovmpt2rdx.4 |
|
| ovmpt2rdx.5 |
|
| ovmpt2rdx.6 |
|
| ovmpt2rdxf.px |
|
| ovmpt2rdxf.py |
|
| ovmpt2rdxf.ay |
|
| ovmpt2rdxf.bx |
|
| ovmpt2rdxf.sx |
|
| ovmpt2rdxf.sy |
|
| Ref | Expression |
|---|---|
| ovmpt2rdxf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpt2rdx.1 |
. . 3
| |
| 2 | 1 | oveqd 6667 |
. 2
|
| 3 | ovmpt2rdx.4 |
. . . 4
| |
| 4 | ovmpt2rdxf.px |
. . . . 5
| |
| 5 | ovmpt2rdx.5 |
. . . . . 6
| |
| 6 | ovmpt2rdxf.py |
. . . . . . 7
| |
| 7 | eqid 2622 |
. . . . . . . . 9
| |
| 8 | 7 | ovmpt4g 6783 |
. . . . . . . 8
|
| 9 | 8 | a1i 11 |
. . . . . . 7
|
| 10 | 6, 9 | alrimi 2082 |
. . . . . 6
|
| 11 | 5, 10 | spsbcd 3449 |
. . . . 5
|
| 12 | 4, 11 | alrimi 2082 |
. . . 4
|
| 13 | 3, 12 | spsbcd 3449 |
. . 3
|
| 14 | 5 | adantr 481 |
. . . . 5
|
| 15 | 3 | ad2antrr 762 |
. . . . . . . 8
|
| 16 | simpr 477 |
. . . . . . . . 9
| |
| 17 | 16 | adantr 481 |
. . . . . . . 8
|
| 18 | ovmpt2rdx.3 |
. . . . . . . . 9
| |
| 19 | 18 | adantlr 751 |
. . . . . . . 8
|
| 20 | 15, 17, 19 | 3eltr4d 2716 |
. . . . . . 7
|
| 21 | 5 | ad2antrr 762 |
. . . . . . . 8
|
| 22 | eleq1 2689 |
. . . . . . . . 9
| |
| 23 | 22 | adantl 482 |
. . . . . . . 8
|
| 24 | 21, 23 | mpbird 247 |
. . . . . . 7
|
| 25 | ovmpt2rdx.2 |
. . . . . . . . 9
| |
| 26 | 25 | anassrs 680 |
. . . . . . . 8
|
| 27 | ovmpt2rdx.6 |
. . . . . . . . 9
| |
| 28 | 27 | ad2antrr 762 |
. . . . . . . 8
|
| 29 | 26, 28 | eqeltrd 2701 |
. . . . . . 7
|
| 30 | biimt 350 |
. . . . . . 7
| |
| 31 | 20, 24, 29, 30 | syl3anc 1326 |
. . . . . 6
|
| 32 | simpr 477 |
. . . . . . . 8
| |
| 33 | 17, 32 | oveq12d 6668 |
. . . . . . 7
|
| 34 | 33, 26 | eqeq12d 2637 |
. . . . . 6
|
| 35 | 31, 34 | bitr3d 270 |
. . . . 5
|
| 36 | ovmpt2rdxf.ay |
. . . . . . 7
| |
| 37 | 36 | nfeq2 2780 |
. . . . . 6
|
| 38 | 6, 37 | nfan 1828 |
. . . . 5
|
| 39 | nfmpt22 6723 |
. . . . . . . 8
| |
| 40 | nfcv 2764 |
. . . . . . . 8
| |
| 41 | 36, 39, 40 | nfov 6676 |
. . . . . . 7
|
| 42 | ovmpt2rdxf.sy |
. . . . . . 7
| |
| 43 | 41, 42 | nfeq 2776 |
. . . . . 6
|
| 44 | 43 | a1i 11 |
. . . . 5
|
| 45 | 14, 35, 38, 44 | sbciedf 3471 |
. . . 4
|
| 46 | nfcv 2764 |
. . . . . . 7
| |
| 47 | nfmpt21 6722 |
. . . . . . 7
| |
| 48 | ovmpt2rdxf.bx |
. . . . . . 7
| |
| 49 | 46, 47, 48 | nfov 6676 |
. . . . . 6
|
| 50 | ovmpt2rdxf.sx |
. . . . . 6
| |
| 51 | 49, 50 | nfeq 2776 |
. . . . 5
|
| 52 | 51 | a1i 11 |
. . . 4
|
| 53 | 3, 45, 4, 52 | sbciedf 3471 |
. . 3
|
| 54 | 13, 53 | mpbid 222 |
. 2
|
| 55 | 2, 54 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: ovmpt2rdx 42118 |
| Copyright terms: Public domain | W3C validator |