MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcne12 Structured version   Visualization version   Unicode version

Theorem sbcne12 3986
Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcne12  |-  ( [. A  /  x ]. B  =/=  C  <->  [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C )

Proof of Theorem sbcne12
StepHypRef Expression
1 nne 2798 . . . . . 6  |-  ( -.  B  =/=  C  <->  B  =  C )
21sbcbii 3491 . . . . 5  |-  ( [. A  /  x ].  -.  B  =/=  C  <->  [. A  /  x ]. B  =  C )
32a1i 11 . . . 4  |-  ( A  e.  _V  ->  ( [. A  /  x ].  -.  B  =/=  C  <->  [. A  /  x ]. B  =  C )
)
4 sbcng 3476 . . . 4  |-  ( A  e.  _V  ->  ( [. A  /  x ].  -.  B  =/=  C  <->  -. 
[. A  /  x ]. B  =/=  C
) )
5 sbceqg 3984 . . . . 5  |-  ( A  e.  _V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
6 nne 2798 . . . . 5  |-  ( -. 
[_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C
)
75, 6syl6bbr 278 . . . 4  |-  ( A  e.  _V  ->  ( [. A  /  x ]. B  =  C  <->  -. 
[_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C ) )
83, 4, 73bitr3d 298 . . 3  |-  ( A  e.  _V  ->  ( -.  [. A  /  x ]. B  =/=  C  <->  -. 
[_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C ) )
98con4bid 307 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. B  =/=  C  <->  [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C ) )
10 sbcex 3445 . . . 4  |-  ( [. A  /  x ]. B  =/=  C  ->  A  e.  _V )
1110con3i 150 . . 3  |-  ( -.  A  e.  _V  ->  -. 
[. A  /  x ]. B  =/=  C
)
12 csbprc 3980 . . . . 5  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )
13 csbprc 3980 . . . . 5  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ C  =  (/) )
1412, 13eqtr4d 2659 . . . 4  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
1514, 6sylibr 224 . . 3  |-  ( -.  A  e.  _V  ->  -. 
[_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C )
1611, 152falsed 366 . 2  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. B  =/=  C  <->  [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C ) )
179, 16pm2.61i 176 1  |-  ( [. A  /  x ]. B  =/=  C  <->  [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   [.wsbc 3435   [_csb 3533   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916
This theorem is referenced by:  disjdsct  29480  cdlemkid3N  36221  cdlemkid4  36222
  Copyright terms: Public domain W3C validator