| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkid4 | Structured version Visualization version Unicode version | ||
| Description: Lemma for cdlemkid 36224. (Contributed by NM, 25-Jul-2013.) |
| Ref | Expression |
|---|---|
| cdlemk5.b |
|
| cdlemk5.l |
|
| cdlemk5.j |
|
| cdlemk5.m |
|
| cdlemk5.a |
|
| cdlemk5.h |
|
| cdlemk5.t |
|
| cdlemk5.r |
|
| cdlemk5.z |
|
| cdlemk5.y |
|
| cdlemk5.x |
|
| Ref | Expression |
|---|---|
| cdlemkid4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1090 |
. . . 4
| |
| 2 | cdlemk5.b |
. . . . . 6
| |
| 3 | cdlemk5.h |
. . . . . 6
| |
| 4 | cdlemk5.t |
. . . . . 6
| |
| 5 | 2, 3, 4 | idltrn 35436 |
. . . . 5
|
| 6 | 5 | 3ad2ant1 1082 |
. . . 4
|
| 7 | 1, 6 | eqeltrd 2701 |
. . 3
|
| 8 | cdlemk5.x |
. . . . . . 7
| |
| 9 | 8 | csbeq2i 3993 |
. . . . . 6
|
| 10 | csbriota 6623 |
. . . . . 6
| |
| 11 | 9, 10 | eqtri 2644 |
. . . . 5
|
| 12 | 11 | a1i 11 |
. . . 4
|
| 13 | sbcralg 3513 |
. . . . . 6
| |
| 14 | sbcimg 3477 |
. . . . . . . 8
| |
| 15 | sbc3an 3494 |
. . . . . . . . . 10
| |
| 16 | sbcg 3503 |
. . . . . . . . . . 11
| |
| 17 | sbcg 3503 |
. . . . . . . . . . 11
| |
| 18 | sbcne12 3986 |
. . . . . . . . . . . 12
| |
| 19 | csbconstg 3546 |
. . . . . . . . . . . . 13
| |
| 20 | csbfv 6233 |
. . . . . . . . . . . . . 14
| |
| 21 | 20 | a1i 11 |
. . . . . . . . . . . . 13
|
| 22 | 19, 21 | neeq12d 2855 |
. . . . . . . . . . . 12
|
| 23 | 18, 22 | syl5bb 272 |
. . . . . . . . . . 11
|
| 24 | 16, 17, 23 | 3anbi123d 1399 |
. . . . . . . . . 10
|
| 25 | 15, 24 | syl5bb 272 |
. . . . . . . . 9
|
| 26 | sbceq2g 3990 |
. . . . . . . . 9
| |
| 27 | 25, 26 | imbi12d 334 |
. . . . . . . 8
|
| 28 | 14, 27 | bitrd 268 |
. . . . . . 7
|
| 29 | 28 | ralbidv 2986 |
. . . . . 6
|
| 30 | 13, 29 | bitrd 268 |
. . . . 5
|
| 31 | 30 | riotabidv 6613 |
. . . 4
|
| 32 | 12, 31 | eqtrd 2656 |
. . 3
|
| 33 | 7, 32 | syl 17 |
. 2
|
| 34 | simpl1 1064 |
. . . . . . . . . 10
| |
| 35 | simpl2 1065 |
. . . . . . . . . 10
| |
| 36 | simpl3l 1116 |
. . . . . . . . . 10
| |
| 37 | simpl3r 1117 |
. . . . . . . . . 10
| |
| 38 | simprlr 803 |
. . . . . . . . . . 11
| |
| 39 | simprr1 1109 |
. . . . . . . . . . 11
| |
| 40 | 38, 39 | jca 554 |
. . . . . . . . . 10
|
| 41 | cdlemk5.l |
. . . . . . . . . . 11
| |
| 42 | cdlemk5.j |
. . . . . . . . . . 11
| |
| 43 | cdlemk5.m |
. . . . . . . . . . 11
| |
| 44 | cdlemk5.a |
. . . . . . . . . . 11
| |
| 45 | cdlemk5.r |
. . . . . . . . . . 11
| |
| 46 | cdlemk5.z |
. . . . . . . . . . 11
| |
| 47 | cdlemk5.y |
. . . . . . . . . . 11
| |
| 48 | 2, 41, 42, 43, 44, 3, 4, 45, 46, 47 | cdlemkid2 36212 |
. . . . . . . . . 10
|
| 49 | 34, 35, 36, 37, 40, 48 | syl113anc 1338 |
. . . . . . . . 9
|
| 50 | 49 | eqeq2d 2632 |
. . . . . . . 8
|
| 51 | simprll 802 |
. . . . . . . . 9
| |
| 52 | 2, 41, 44, 3, 4 | ltrnideq 35462 |
. . . . . . . . 9
|
| 53 | 34, 51, 36, 52 | syl3anc 1326 |
. . . . . . . 8
|
| 54 | 50, 53 | bitr4d 271 |
. . . . . . 7
|
| 55 | 54 | exp44 641 |
. . . . . 6
|
| 56 | 55 | imp41 619 |
. . . . 5
|
| 57 | 56 | pm5.74da 723 |
. . . 4
|
| 58 | 57 | ralbidva 2985 |
. . 3
|
| 59 | 58 | riotabidva 6627 |
. 2
|
| 60 | 33, 59 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-undef 7399 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 |
| This theorem is referenced by: cdlemkid5 36223 cdlemkid 36224 |
| Copyright terms: Public domain | W3C validator |