| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcel1g | Structured version Visualization version Unicode version | ||
| Description: Move proper substitution
in and out of a membership relation. Note that
the scope of |
| Ref | Expression |
|---|---|
| sbcel1g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcel12 3983 |
. 2
| |
| 2 | csbconstg 3546 |
. . 3
| |
| 3 | 2 | eleq2d 2687 |
. 2
|
| 4 | 1, 3 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: rspcsbela 4006 csbopg 4420 fprodcllemf 14688 wunnat 16616 catcfuccl 16759 esumpfinvalf 30138 esum2dlem 30154 measiuns 30280 bj-sbel1 32900 csbfinxpg 33225 finixpnum 33394 renegclALT 34249 cdlemk35s 36225 ellimcabssub0 39849 |
| Copyright terms: Public domain | W3C validator |