Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcoreleleq Structured version   Visualization version   Unicode version

Theorem sbcoreleleq 38745
Description: Substitution of a setvar variable for another setvar variable in a 3-conjunct formula. Derived automatically from sbcoreleleqVD 39095. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcoreleleq  |-  ( A  e.  V  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    V( x, y)

Proof of Theorem sbcoreleleq
StepHypRef Expression
1 sbcel2gv 3496 . . 3  |-  ( A  e.  V  ->  ( [. A  /  y ]. x  e.  y  <->  x  e.  A ) )
2 sbcel1v 3495 . . . 4  |-  ( [. A  /  y ]. y  e.  x  <->  A  e.  x
)
32a1i 11 . . 3  |-  ( A  e.  V  ->  ( [. A  /  y ]. y  e.  x  <->  A  e.  x ) )
4 eqsbc3r 3492 . . 3  |-  ( A  e.  V  ->  ( [. A  /  y ]. x  =  y  <->  x  =  A ) )
5 3orbi123 38717 . . . 4  |-  ( ( ( [. A  / 
y ]. x  e.  y  <-> 
x  e.  A )  /\  ( [. A  /  y ]. y  e.  x  <->  A  e.  x
)  /\  ( [. A  /  y ]. x  =  y  <->  x  =  A
) )  ->  (
( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y
)  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) )
653impexpbicomi 38686 . . 3  |-  ( (
[. A  /  y ]. x  e.  y  <->  x  e.  A )  -> 
( ( [. A  /  y ]. y  e.  x  <->  A  e.  x
)  ->  ( ( [. A  /  y ]. x  =  y  <->  x  =  A )  -> 
( ( x  e.  A  \/  A  e.  x  \/  x  =  A )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) ) ) )
71, 3, 4, 6syl3c 66 . 2  |-  ( A  e.  V  ->  (
( x  e.  A  \/  A  e.  x  \/  x  =  A
)  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) )
8 sbc3or 38738 . 2  |-  ( [. A  /  y ]. (
x  e.  y  \/  y  e.  x  \/  x  =  y )  <-> 
( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y
) )
97, 8syl6rbbr 279 1  |-  ( A  e.  V  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ w3o 1036    = wceq 1483    e. wcel 1990   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by:  tratrb  38746  tratrbVD  39097
  Copyright terms: Public domain W3C validator