| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcralt | Structured version Visualization version Unicode version | ||
| Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.) |
| Ref | Expression |
|---|---|
| sbcralt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcco 3458 |
. 2
| |
| 2 | simpl 473 |
. . 3
| |
| 3 | sbsbc 3439 |
. . . . 5
| |
| 4 | nfcv 2764 |
. . . . . . 7
| |
| 5 | nfs1v 2437 |
. . . . . . 7
| |
| 6 | 4, 5 | nfral 2945 |
. . . . . 6
|
| 7 | sbequ12 2111 |
. . . . . . 7
| |
| 8 | 7 | ralbidv 2986 |
. . . . . 6
|
| 9 | 6, 8 | sbie 2408 |
. . . . 5
|
| 10 | 3, 9 | bitr3i 266 |
. . . 4
|
| 11 | nfnfc1 2767 |
. . . . . . 7
| |
| 12 | nfcvd 2765 |
. . . . . . . 8
| |
| 13 | id 22 |
. . . . . . . 8
| |
| 14 | 12, 13 | nfeqd 2772 |
. . . . . . 7
|
| 15 | 11, 14 | nfan1 2068 |
. . . . . 6
|
| 16 | dfsbcq2 3438 |
. . . . . . 7
| |
| 17 | 16 | adantl 482 |
. . . . . 6
|
| 18 | 15, 17 | ralbid 2983 |
. . . . 5
|
| 19 | 18 | adantll 750 |
. . . 4
|
| 20 | 10, 19 | syl5bb 272 |
. . 3
|
| 21 | 2, 20 | sbcied 3472 |
. 2
|
| 22 | 1, 21 | syl5bbr 274 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: sbcrext 3511 sbcrextOLD 3512 sbcralg 3513 |
| Copyright terms: Public domain | W3C validator |