Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecseq Structured version   Visualization version   Unicode version

Theorem setrecseq 42432
Description: Equality theorem for set recursion. (Contributed by Emmett Weisz, 17-Feb-2021.)
Assertion
Ref Expression
setrecseq  |-  ( F  =  G  -> setrecs ( F )  = setrecs ( G ) )

Proof of Theorem setrecseq
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6190 . . . . . . . . . 10  |-  ( F  =  G  ->  ( F `  w )  =  ( G `  w ) )
21sseq1d 3632 . . . . . . . . 9  |-  ( F  =  G  ->  (
( F `  w
)  C_  z  <->  ( G `  w )  C_  z
) )
32imbi2d 330 . . . . . . . 8  |-  ( F  =  G  ->  (
( w  C_  z  ->  ( F `  w
)  C_  z )  <->  ( w  C_  z  ->  ( G `  w ) 
C_  z ) ) )
43imbi2d 330 . . . . . . 7  |-  ( F  =  G  ->  (
( w  C_  y  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  <->  ( w  C_  y  ->  ( w  C_  z  ->  ( G `  w )  C_  z
) ) ) )
54albidv 1849 . . . . . 6  |-  ( F  =  G  ->  ( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w )  C_  z
) )  <->  A. w
( w  C_  y  ->  ( w  C_  z  ->  ( G `  w
)  C_  z )
) ) )
65imbi1d 331 . . . . 5  |-  ( F  =  G  ->  (
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
)  <->  ( A. w
( w  C_  y  ->  ( w  C_  z  ->  ( G `  w
)  C_  z )
)  ->  y  C_  z ) ) )
76albidv 1849 . . . 4  |-  ( F  =  G  ->  ( A. z ( A. w
( w  C_  y  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  y  C_  z )  <->  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( G `  w ) 
C_  z ) )  ->  y  C_  z
) ) )
87abbidv 2741 . . 3  |-  ( F  =  G  ->  { y  |  A. z ( A. w ( w 
C_  y  ->  (
w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
) }  =  {
y  |  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( G `  w ) 
C_  z ) )  ->  y  C_  z
) } )
98unieqd 4446 . 2  |-  ( F  =  G  ->  U. {
y  |  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
) }  =  U. { y  |  A. z ( A. w
( w  C_  y  ->  ( w  C_  z  ->  ( G `  w
)  C_  z )
)  ->  y  C_  z ) } )
10 df-setrecs 42431 . 2  |- setrecs ( F )  =  U. {
y  |  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
) }
11 df-setrecs 42431 . 2  |- setrecs ( G )  =  U. {
y  |  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( G `  w ) 
C_  z ) )  ->  y  C_  z
) }
129, 10, 113eqtr4g 2681 1  |-  ( F  =  G  -> setrecs ( F )  = setrecs ( G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481    = wceq 1483   {cab 2608    C_ wss 3574   U.cuni 4436   ` cfv 5888  setrecscsetrecs 42430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-in 3581  df-ss 3588  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-setrecs 42431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator