| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smodm | Structured version Visualization version Unicode version | ||
| Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| Ref | Expression |
|---|---|
| smodm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-smo 7443 |
. 2
| |
| 2 | 1 | simp2bi 1077 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-smo 7443 |
| This theorem is referenced by: smores2 7451 smodm2 7452 smoel 7457 |
| Copyright terms: Public domain | W3C validator |