| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smores2 | Structured version Visualization version Unicode version | ||
| Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
| Ref | Expression |
|---|---|
| smores2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsmo2 7444 |
. . . . . . 7
| |
| 2 | 1 | simp1bi 1076 |
. . . . . 6
|
| 3 | ffun 6048 |
. . . . . 6
| |
| 4 | 2, 3 | syl 17 |
. . . . 5
|
| 5 | funres 5929 |
. . . . . 6
| |
| 6 | funfn 5918 |
. . . . . 6
| |
| 7 | 5, 6 | sylib 208 |
. . . . 5
|
| 8 | 4, 7 | syl 17 |
. . . 4
|
| 9 | df-ima 5127 |
. . . . . 6
| |
| 10 | imassrn 5477 |
. . . . . 6
| |
| 11 | 9, 10 | eqsstr3i 3636 |
. . . . 5
|
| 12 | frn 6053 |
. . . . . 6
| |
| 13 | 2, 12 | syl 17 |
. . . . 5
|
| 14 | 11, 13 | syl5ss 3614 |
. . . 4
|
| 15 | df-f 5892 |
. . . 4
| |
| 16 | 8, 14, 15 | sylanbrc 698 |
. . 3
|
| 17 | 16 | adantr 481 |
. 2
|
| 18 | smodm 7448 |
. . 3
| |
| 19 | ordin 5753 |
. . . . 5
| |
| 20 | dmres 5419 |
. . . . . 6
| |
| 21 | ordeq 5730 |
. . . . . 6
| |
| 22 | 20, 21 | ax-mp 5 |
. . . . 5
|
| 23 | 19, 22 | sylibr 224 |
. . . 4
|
| 24 | 23 | ancoms 469 |
. . 3
|
| 25 | 18, 24 | sylan 488 |
. 2
|
| 26 | resss 5422 |
. . . . . 6
| |
| 27 | dmss 5323 |
. . . . . 6
| |
| 28 | 26, 27 | ax-mp 5 |
. . . . 5
|
| 29 | 1 | simp3bi 1078 |
. . . . 5
|
| 30 | ssralv 3666 |
. . . . 5
| |
| 31 | 28, 29, 30 | mpsyl 68 |
. . . 4
|
| 32 | 31 | adantr 481 |
. . 3
|
| 33 | ordtr1 5767 |
. . . . . . . . . . 11
| |
| 34 | 25, 33 | syl 17 |
. . . . . . . . . 10
|
| 35 | inss1 3833 |
. . . . . . . . . . . 12
| |
| 36 | 20, 35 | eqsstri 3635 |
. . . . . . . . . . 11
|
| 37 | 36 | sseli 3599 |
. . . . . . . . . 10
|
| 38 | 34, 37 | syl6 35 |
. . . . . . . . 9
|
| 39 | 38 | expcomd 454 |
. . . . . . . 8
|
| 40 | 39 | imp31 448 |
. . . . . . 7
|
| 41 | fvres 6207 |
. . . . . . 7
| |
| 42 | 40, 41 | syl 17 |
. . . . . 6
|
| 43 | 36 | sseli 3599 |
. . . . . . . 8
|
| 44 | fvres 6207 |
. . . . . . . 8
| |
| 45 | 43, 44 | syl 17 |
. . . . . . 7
|
| 46 | 45 | ad2antlr 763 |
. . . . . 6
|
| 47 | 42, 46 | eleq12d 2695 |
. . . . 5
|
| 48 | 47 | ralbidva 2985 |
. . . 4
|
| 49 | 48 | ralbidva 2985 |
. . 3
|
| 50 | 32, 49 | mpbird 247 |
. 2
|
| 51 | dfsmo2 7444 |
. 2
| |
| 52 | 17, 25, 50, 51 | syl3anbrc 1246 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-smo 7443 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |