MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soeq1 Structured version   Visualization version   Unicode version

Theorem soeq1 5054
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
soeq1  |-  ( R  =  S  ->  ( R  Or  A  <->  S  Or  A ) )

Proof of Theorem soeq1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poeq1 5038 . . 3  |-  ( R  =  S  ->  ( R  Po  A  <->  S  Po  A ) )
2 breq 4655 . . . . 5  |-  ( R  =  S  ->  (
x R y  <->  x S
y ) )
3 biidd 252 . . . . 5  |-  ( R  =  S  ->  (
x  =  y  <->  x  =  y ) )
4 breq 4655 . . . . 5  |-  ( R  =  S  ->  (
y R x  <->  y S x ) )
52, 3, 43orbi123d 1398 . . . 4  |-  ( R  =  S  ->  (
( x R y  \/  x  =  y  \/  y R x )  <->  ( x S y  \/  x  =  y  \/  y S x ) ) )
652ralbidv 2989 . . 3  |-  ( R  =  S  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x )  <->  A. x  e.  A  A. y  e.  A  ( x S y  \/  x  =  y  \/  y S x ) ) )
71, 6anbi12d 747 . 2  |-  ( R  =  S  ->  (
( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )  <->  ( S  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x S y  \/  x  =  y  \/  y S x ) ) ) )
8 df-so 5036 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
9 df-so 5036 . 2  |-  ( S  Or  A  <->  ( S  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x S y  \/  x  =  y  \/  y S x ) ) )
107, 8, 93bitr4g 303 1  |-  ( R  =  S  ->  ( R  Or  A  <->  S  Or  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483   A.wral 2912   class class class wbr 4653    Po wpo 5033    Or wor 5034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-ex 1705  df-cleq 2615  df-clel 2618  df-ral 2917  df-br 4654  df-po 5035  df-so 5036
This theorem is referenced by:  weeq1  5102  ltsopi  9710  cnso  14976  opsrtoslem2  19485  soeq12d  37608
  Copyright terms: Public domain W3C validator