| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soeq1 | Structured version Visualization version Unicode version | ||
| Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) |
| Ref | Expression |
|---|---|
| soeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poeq1 5038 |
. . 3
| |
| 2 | breq 4655 |
. . . . 5
| |
| 3 | biidd 252 |
. . . . 5
| |
| 4 | breq 4655 |
. . . . 5
| |
| 5 | 2, 3, 4 | 3orbi123d 1398 |
. . . 4
|
| 6 | 5 | 2ralbidv 2989 |
. . 3
|
| 7 | 1, 6 | anbi12d 747 |
. 2
|
| 8 | df-so 5036 |
. 2
| |
| 9 | df-so 5036 |
. 2
| |
| 10 | 7, 8, 9 | 3bitr4g 303 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-ex 1705 df-cleq 2615 df-clel 2618 df-ral 2917 df-br 4654 df-po 5035 df-so 5036 |
| This theorem is referenced by: weeq1 5102 ltsopi 9710 cnso 14976 opsrtoslem2 19485 soeq12d 37608 |
| Copyright terms: Public domain | W3C validator |