MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-so Structured version   Visualization version   Unicode version

Definition df-so 5036
Description: Define the strict complete (linear) order predicate. The expression  R  Or  A is true if relationship  R orders  A. For example,  <  Or  RR is true (ltso 10118). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
df-so  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
Distinct variable groups:    x, y, R    x, A, y

Detailed syntax breakdown of Definition df-so
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wor 5034 . 2  wff  R  Or  A
41, 2wpo 5033 . . 3  wff  R  Po  A
5 vx . . . . . . . 8  setvar  x
65cv 1482 . . . . . . 7  class  x
7 vy . . . . . . . 8  setvar  y
87cv 1482 . . . . . . 7  class  y
96, 8, 2wbr 4653 . . . . . 6  wff  x R y
105, 7weq 1874 . . . . . 6  wff  x  =  y
118, 6, 2wbr 4653 . . . . . 6  wff  y R x
129, 10, 11w3o 1036 . . . . 5  wff  ( x R y  \/  x  =  y  \/  y R x )
1312, 7, 1wral 2912 . . . 4  wff  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x )
1413, 5, 1wral 2912 . . 3  wff  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x )
154, 14wa 384 . 2  wff  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x ) )
163, 15wb 196 1  wff  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  nfso  5041  sopo  5052  soss  5053  soeq1  5054  solin  5058  issod  5065  so0  5068  soinxp  5183  sosn  5188  cnvso  5674  isosolem  6597  sorpss  6942  dfwe2  6981  soxp  7290  sornom  9099  zorn2lem6  9323  tosso  17036  dfso3  31601  dfso2  31644  soseq  31751
  Copyright terms: Public domain W3C validator