Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sotr3 Structured version   Visualization version   Unicode version

Theorem sotr3 31656
Description: Transitivity law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
sotr3  |-  ( ( R  Or  A  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A
) )  ->  (
( X R Y  /\  -.  Z R Y )  ->  X R Z ) )

Proof of Theorem sotr3
StepHypRef Expression
1 simp3 1063 . . . . . . 7  |-  ( ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  ->  Z  e.  A )
2 simp2 1062 . . . . . . 7  |-  ( ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  ->  Y  e.  A )
31, 2jca 554 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  ->  ( Z  e.  A  /\  Y  e.  A
) )
4 sotric 5061 . . . . . 6  |-  ( ( R  Or  A  /\  ( Z  e.  A  /\  Y  e.  A
) )  ->  ( Z R Y  <->  -.  ( Z  =  Y  \/  Y R Z ) ) )
53, 4sylan2 491 . . . . 5  |-  ( ( R  Or  A  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A
) )  ->  ( Z R Y  <->  -.  ( Z  =  Y  \/  Y R Z ) ) )
65con2bid 344 . . . 4  |-  ( ( R  Or  A  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A
) )  ->  (
( Z  =  Y  \/  Y R Z )  <->  -.  Z R Y ) )
76adantr 481 . . 3  |-  ( ( ( R  Or  A  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A
) )  /\  X R Y )  ->  (
( Z  =  Y  \/  Y R Z )  <->  -.  Z R Y ) )
8 breq2 4657 . . . . . 6  |-  ( Z  =  Y  ->  ( X R Z  <->  X R Y ) )
98biimprcd 240 . . . . 5  |-  ( X R Y  ->  ( Z  =  Y  ->  X R Z ) )
109adantl 482 . . . 4  |-  ( ( ( R  Or  A  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A
) )  /\  X R Y )  ->  ( Z  =  Y  ->  X R Z ) )
11 sotr 5057 . . . . 5  |-  ( ( R  Or  A  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A
) )  ->  (
( X R Y  /\  Y R Z )  ->  X R Z ) )
1211expdimp 453 . . . 4  |-  ( ( ( R  Or  A  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A
) )  /\  X R Y )  ->  ( Y R Z  ->  X R Z ) )
1310, 12jaod 395 . . 3  |-  ( ( ( R  Or  A  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A
) )  /\  X R Y )  ->  (
( Z  =  Y  \/  Y R Z )  ->  X R Z ) )
147, 13sylbird 250 . 2  |-  ( ( ( R  Or  A  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A
) )  /\  X R Y )  ->  ( -.  Z R Y  ->  X R Z ) )
1514expimpd 629 1  |-  ( ( R  Or  A  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A
) )  ->  (
( X R Y  /\  -.  Z R Y )  ->  X R Z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653    Or wor 5034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-po 5035  df-so 5036
This theorem is referenced by:  nosupbnd2  31862  sltletr  31881
  Copyright terms: Public domain W3C validator