MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc3egv Structured version   Visualization version   Unicode version

Theorem spc3egv 3297
Description: Existential specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
Hypothesis
Ref Expression
spc3egv.1  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
spc3egv  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps  ->  E. x E. y E. z ph ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    ps, x, y, z
Allowed substitution hints:    ph( x, y, z)    V( x, y, z)    W( x, y, z)    X( x, y, z)

Proof of Theorem spc3egv
StepHypRef Expression
1 elisset 3215 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
2 elisset 3215 . . . 4  |-  ( B  e.  W  ->  E. y 
y  =  B )
3 elisset 3215 . . . 4  |-  ( C  e.  X  ->  E. z 
z  =  C )
41, 2, 33anim123i 1247 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( E. x  x  =  A  /\  E. y  y  =  B  /\  E. z  z  =  C ) )
5 eeeanv 2183 . . 3  |-  ( E. x E. y E. z ( x  =  A  /\  y  =  B  /\  z  =  C )  <->  ( E. x  x  =  A  /\  E. y  y  =  B  /\  E. z 
z  =  C ) )
64, 5sylibr 224 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  E. x E. y E. z ( x  =  A  /\  y  =  B  /\  z  =  C ) )
7 spc3egv.1 . . . . 5  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
87biimprcd 240 . . . 4  |-  ( ps 
->  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ph )
)
98eximdv 1846 . . 3  |-  ( ps 
->  ( E. z ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  E. z ph )
)
1092eximdv 1848 . 2  |-  ( ps 
->  ( E. x E. y E. z ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  E. x E. y E. z ph ) )
116, 10syl5com 31 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps  ->  E. x E. y E. z ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by:  spc3gv  3298  dihjatcclem4  36710
  Copyright terms: Public domain W3C validator