MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssext Structured version   Visualization version   Unicode version

Theorem ssext 4923
Description: An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.)
Assertion
Ref Expression
ssext  |-  ( A  =  B  <->  A. x
( x  C_  A  <->  x 
C_  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ssext
StepHypRef Expression
1 ssextss 4922 . . 3  |-  ( A 
C_  B  <->  A. x
( x  C_  A  ->  x  C_  B )
)
2 ssextss 4922 . . 3  |-  ( B 
C_  A  <->  A. x
( x  C_  B  ->  x  C_  A )
)
31, 2anbi12i 733 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  <->  ( A. x ( x  C_  A  ->  x  C_  B
)  /\  A. x
( x  C_  B  ->  x  C_  A )
) )
4 eqss 3618 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 albiim 1816 . 2  |-  ( A. x ( x  C_  A 
<->  x  C_  B )  <->  ( A. x ( x 
C_  A  ->  x  C_  B )  /\  A. x ( x  C_  B  ->  x  C_  A
) ) )
63, 4, 53bitr4i 292 1  |-  ( A  =  B  <->  A. x
( x  C_  A  <->  x 
C_  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator