| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwtr | Structured version Visualization version Unicode version | ||
| Description: Virtual deduction proof of the right-to-left implication of dftr4 4757. A class which is a subclass of its power class is transitive. This proof corresponds to the virtual deduction proof of sspwtr 39048 without accumulating results. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspwtr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr2 4754 |
. . 3
| |
| 2 | idn1 38790 |
. . . . . . . 8
| |
| 3 | idn2 38838 |
. . . . . . . . 9
| |
| 4 | simpr 477 |
. . . . . . . . 9
| |
| 5 | 3, 4 | e2 38856 |
. . . . . . . 8
|
| 6 | ssel 3597 |
. . . . . . . 8
| |
| 7 | 2, 5, 6 | e12 38951 |
. . . . . . 7
|
| 8 | elpwi 4168 |
. . . . . . 7
| |
| 9 | 7, 8 | e2 38856 |
. . . . . 6
|
| 10 | simpl 473 |
. . . . . . 7
| |
| 11 | 3, 10 | e2 38856 |
. . . . . 6
|
| 12 | ssel 3597 |
. . . . . 6
| |
| 13 | 9, 11, 12 | e22 38896 |
. . . . 5
|
| 14 | 13 | in2 38830 |
. . . 4
|
| 15 | 14 | gen12 38843 |
. . 3
|
| 16 | biimpr 210 |
. . 3
| |
| 17 | 1, 15, 16 | e01 38916 |
. 2
|
| 18 | 17 | in1 38787 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 df-uni 4437 df-tr 4753 df-vd1 38786 df-vd2 38794 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |