| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tr | Structured version Visualization version Unicode version | ||
| Description: Define the transitive
class predicate. Not to be confused with a
transitive relation (see cotr 5508). Definition of [Enderton] p. 71
extended to arbitrary classes. For alternate definitions, see dftr2 4754
(which is suggestive of the word "transitive"), dftr3 4756, dftr4 4757,
dftr5 4755, and (when |
| Ref | Expression |
|---|---|
| df-tr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | 1 | wtr 4752 |
. 2
|
| 3 | 1 | cuni 4436 |
. . 3
|
| 4 | 3, 1 | wss 3574 |
. 2
|
| 5 | 2, 4 | wb 196 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: dftr2 4754 dftr4 4757 treq 4758 trv 4765 pwtr 4921 unisuc 5801 orduniss 5821 onuninsuci 7040 trcl 8604 tc2 8618 r1tr2 8640 tskuni 9605 untangtr 31591 hfuni 32291 |
| Copyright terms: Public domain | W3C validator |