Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipwr Structured version   Visualization version   Unicode version

Theorem unipwr 39068
Description: A class is a subclass of the union of its power class. This theorem is the right-to-left subclass lemma of unipw 4918. The proof of this theorem was automatically generated from unipwrVD 39067 using a tools command file , translateMWO.cmd , by translating the proof into its non-virtual deduction form and minimizing it. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unipwr  |-  A  C_  U. ~P A

Proof of Theorem unipwr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . 4  |-  x  e. 
_V
21snid 4208 . . 3  |-  x  e. 
{ x }
3 snelpwi 4912 . . 3  |-  ( x  e.  A  ->  { x }  e.  ~P A
)
4 elunii 4441 . . 3  |-  ( ( x  e.  { x }  /\  { x }  e.  ~P A )  ->  x  e.  U. ~P A
)
52, 3, 4sylancr 695 . 2  |-  ( x  e.  A  ->  x  e.  U. ~P A )
65ssriv 3607 1  |-  A  C_  U. ~P A
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator