MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq3 Structured version   Visualization version   Unicode version

Theorem supeq3 8355
Description: Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
supeq3  |-  ( R  =  S  ->  sup ( A ,  B ,  R )  =  sup ( A ,  B ,  S ) )

Proof of Theorem supeq3
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4655 . . . . . . 7  |-  ( R  =  S  ->  (
x R y  <->  x S
y ) )
21notbid 308 . . . . . 6  |-  ( R  =  S  ->  ( -.  x R y  <->  -.  x S y ) )
32ralbidv 2986 . . . . 5  |-  ( R  =  S  ->  ( A. y  e.  A  -.  x R y  <->  A. y  e.  A  -.  x S y ) )
4 breq 4655 . . . . . . 7  |-  ( R  =  S  ->  (
y R x  <->  y S x ) )
5 breq 4655 . . . . . . . 8  |-  ( R  =  S  ->  (
y R z  <->  y S
z ) )
65rexbidv 3052 . . . . . . 7  |-  ( R  =  S  ->  ( E. z  e.  A  y R z  <->  E. z  e.  A  y S
z ) )
74, 6imbi12d 334 . . . . . 6  |-  ( R  =  S  ->  (
( y R x  ->  E. z  e.  A  y R z )  <->  ( y S x  ->  E. z  e.  A  y S
z ) ) )
87ralbidv 2986 . . . . 5  |-  ( R  =  S  ->  ( A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z )  <->  A. y  e.  B  ( y S x  ->  E. z  e.  A  y S
z ) ) )
93, 8anbi12d 747 . . . 4  |-  ( R  =  S  ->  (
( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R
z ) )  <->  ( A. y  e.  A  -.  x S y  /\  A. y  e.  B  (
y S x  ->  E. z  e.  A  y S z ) ) ) )
109rabbidv 3189 . . 3  |-  ( R  =  S  ->  { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z ) ) }  =  { x  e.  B  |  ( A. y  e.  A  -.  x S y  /\  A. y  e.  B  ( y S x  ->  E. z  e.  A  y S z ) ) } )
1110unieqd 4446 . 2  |-  ( R  =  S  ->  U. {
x  e.  B  | 
( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R
z ) ) }  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x S y  /\  A. y  e.  B  ( y S x  ->  E. z  e.  A  y S z ) ) } )
12 df-sup 8348 . 2  |-  sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  A  y R z ) ) }
13 df-sup 8348 . 2  |-  sup ( A ,  B ,  S )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x S y  /\  A. y  e.  B  (
y S x  ->  E. z  e.  A  y S z ) ) }
1411, 12, 133eqtr4g 2681 1  |-  ( R  =  S  ->  sup ( A ,  B ,  R )  =  sup ( A ,  B ,  S ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   A.wral 2912   E.wrex 2913   {crab 2916   U.cuni 4436   class class class wbr 4653   supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-uni 4437  df-br 4654  df-sup 8348
This theorem is referenced by:  infeq3  8386
  Copyright terms: Public domain W3C validator