MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq3 Structured version   Visualization version   GIF version

Theorem supeq3 8355
Description: Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
supeq3 (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))

Proof of Theorem supeq3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4655 . . . . . . 7 (𝑅 = 𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
21notbid 308 . . . . . 6 (𝑅 = 𝑆 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑆𝑦))
32ralbidv 2986 . . . . 5 (𝑅 = 𝑆 → (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥𝑆𝑦))
4 breq 4655 . . . . . . 7 (𝑅 = 𝑆 → (𝑦𝑅𝑥𝑦𝑆𝑥))
5 breq 4655 . . . . . . . 8 (𝑅 = 𝑆 → (𝑦𝑅𝑧𝑦𝑆𝑧))
65rexbidv 3052 . . . . . . 7 (𝑅 = 𝑆 → (∃𝑧𝐴 𝑦𝑅𝑧 ↔ ∃𝑧𝐴 𝑦𝑆𝑧))
74, 6imbi12d 334 . . . . . 6 (𝑅 = 𝑆 → ((𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧) ↔ (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧)))
87ralbidv 2986 . . . . 5 (𝑅 = 𝑆 → (∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧) ↔ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧)))
93, 8anbi12d 747 . . . 4 (𝑅 = 𝑆 → ((∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧))))
109rabbidv 3189 . . 3 (𝑅 = 𝑆 → {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧))})
1110unieqd 4446 . 2 (𝑅 = 𝑆 {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧))})
12 df-sup 8348 . 2 sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
13 df-sup 8348 . 2 sup(𝐴, 𝐵, 𝑆) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧))}
1411, 12, 133eqtr4g 2681 1 (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wral 2912  wrex 2913  {crab 2916   cuni 4436   class class class wbr 4653  supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-uni 4437  df-br 4654  df-sup 8348
This theorem is referenced by:  infeq3  8386
  Copyright terms: Public domain W3C validator