| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supeq123d | Structured version Visualization version Unicode version | ||
| Description: Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| Ref | Expression |
|---|---|
| supeq123d.a |
|
| supeq123d.b |
|
| supeq123d.c |
|
| Ref | Expression |
|---|---|
| supeq123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq123d.b |
. . . 4
| |
| 2 | supeq123d.a |
. . . . . 6
| |
| 3 | supeq123d.c |
. . . . . . . 8
| |
| 4 | 3 | breqd 4664 |
. . . . . . 7
|
| 5 | 4 | notbid 308 |
. . . . . 6
|
| 6 | 2, 5 | raleqbidv 3152 |
. . . . 5
|
| 7 | 3 | breqd 4664 |
. . . . . . 7
|
| 8 | 3 | breqd 4664 |
. . . . . . . 8
|
| 9 | 2, 8 | rexeqbidv 3153 |
. . . . . . 7
|
| 10 | 7, 9 | imbi12d 334 |
. . . . . 6
|
| 11 | 1, 10 | raleqbidv 3152 |
. . . . 5
|
| 12 | 6, 11 | anbi12d 747 |
. . . 4
|
| 13 | 1, 12 | rabeqbidv 3195 |
. . 3
|
| 14 | 13 | unieqd 4446 |
. 2
|
| 15 | df-sup 8348 |
. 2
| |
| 16 | df-sup 8348 |
. 2
| |
| 17 | 14, 15, 16 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-uni 4437 df-br 4654 df-sup 8348 |
| This theorem is referenced by: infeq123d 8387 wlimeq12 31765 aomclem8 37631 |
| Copyright terms: Public domain | W3C validator |