| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2ani | Structured version Visualization version Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.) |
| Ref | Expression |
|---|---|
| syl2ani.1 |
|
| syl2ani.2 |
|
| syl2ani.3 |
|
| Ref | Expression |
|---|---|
| syl2ani |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2ani.1 |
. 2
| |
| 2 | syl2ani.2 |
. . 3
| |
| 3 | syl2ani.3 |
. . 3
| |
| 4 | 2, 3 | sylan2i 687 |
. 2
|
| 5 | 1, 4 | sylani 686 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: 2mo 2551 frxp 7287 mapen 8124 fin1a2lem9 9230 coprmproddvdslem 15376 psss 17214 mgmidmo 17259 aannenlem1 24083 funtransport 32138 cgrxfr 32162 btwnxfr 32163 bj-cbv3tb 32711 |
| Copyright terms: Public domain | W3C validator |