MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapen Structured version   Visualization version   Unicode version

Theorem mapen 8124
Description: Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of [Enderton] p. 139. (Contributed by NM, 16-Dec-2003.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapen  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  ^m  C
)  ~~  ( B  ^m  D ) )

Proof of Theorem mapen
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 7964 . 2  |-  ( A 
~~  B  <->  E. f 
f : A -1-1-onto-> B )
2 bren 7964 . 2  |-  ( C 
~~  D  <->  E. g 
g : C -1-1-onto-> D )
3 eeanv 2182 . . 3  |-  ( E. f E. g ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  <->  ( E. f  f : A -1-1-onto-> B  /\  E. g  g : C -1-1-onto-> D ) )
4 ovexd 6680 . . . . 5  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  ( A  ^m  C )  e. 
_V )
5 ovexd 6680 . . . . 5  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  ( B  ^m  D )  e. 
_V )
6 elmapi 7879 . . . . . . 7  |-  ( x  e.  ( A  ^m  C )  ->  x : C --> A )
7 f1of 6137 . . . . . . . . . . 11  |-  ( f : A -1-1-onto-> B  ->  f : A
--> B )
87adantr 481 . . . . . . . . . 10  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  f : A --> B )
9 fco 6058 . . . . . . . . . 10  |-  ( ( f : A --> B  /\  x : C --> A )  ->  ( f  o.  x ) : C --> B )
108, 9sylan 488 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  x : C --> A )  ->  (
f  o.  x ) : C --> B )
11 f1ocnv 6149 . . . . . . . . . . . 12  |-  ( g : C -1-1-onto-> D  ->  `' g : D -1-1-onto-> C )
1211adantl 482 . . . . . . . . . . 11  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  `' g : D -1-1-onto-> C )
13 f1of 6137 . . . . . . . . . . 11  |-  ( `' g : D -1-1-onto-> C  ->  `' g : D --> C )
1412, 13syl 17 . . . . . . . . . 10  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  `' g : D --> C )
1514adantr 481 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  x : C --> A )  ->  `' g : D --> C )
16 fco 6058 . . . . . . . . 9  |-  ( ( ( f  o.  x
) : C --> B  /\  `' g : D --> C )  ->  (
( f  o.  x
)  o.  `' g ) : D --> B )
1710, 15, 16syl2anc 693 . . . . . . . 8  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  x : C --> A )  ->  (
( f  o.  x
)  o.  `' g ) : D --> B )
1817ex 450 . . . . . . 7  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  (
x : C --> A  -> 
( ( f  o.  x )  o.  `' g ) : D --> B ) )
196, 18syl5 34 . . . . . 6  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  (
x  e.  ( A  ^m  C )  -> 
( ( f  o.  x )  o.  `' g ) : D --> B ) )
20 f1ofo 6144 . . . . . . . . . 10  |-  ( f : A -1-1-onto-> B  ->  f : A -onto-> B )
2120adantr 481 . . . . . . . . 9  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  f : A -onto-> B )
22 forn 6118 . . . . . . . . 9  |-  ( f : A -onto-> B  ->  ran  f  =  B
)
2321, 22syl 17 . . . . . . . 8  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  ran  f  =  B )
24 vex 3203 . . . . . . . . 9  |-  f  e. 
_V
2524rnex 7100 . . . . . . . 8  |-  ran  f  e.  _V
2623, 25syl6eqelr 2710 . . . . . . 7  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  B  e.  _V )
27 f1ofo 6144 . . . . . . . . . 10  |-  ( g : C -1-1-onto-> D  ->  g : C -onto-> D )
2827adantl 482 . . . . . . . . 9  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  g : C -onto-> D )
29 forn 6118 . . . . . . . . 9  |-  ( g : C -onto-> D  ->  ran  g  =  D
)
3028, 29syl 17 . . . . . . . 8  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  ran  g  =  D )
31 vex 3203 . . . . . . . . 9  |-  g  e. 
_V
3231rnex 7100 . . . . . . . 8  |-  ran  g  e.  _V
3330, 32syl6eqelr 2710 . . . . . . 7  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  D  e.  _V )
3426, 33elmapd 7871 . . . . . 6  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  (
( ( f  o.  x )  o.  `' g )  e.  ( B  ^m  D )  <-> 
( ( f  o.  x )  o.  `' g ) : D --> B ) )
3519, 34sylibrd 249 . . . . 5  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  (
x  e.  ( A  ^m  C )  -> 
( ( f  o.  x )  o.  `' g )  e.  ( B  ^m  D ) ) )
36 elmapi 7879 . . . . . . 7  |-  ( y  e.  ( B  ^m  D )  ->  y : D --> B )
37 f1ocnv 6149 . . . . . . . . . . . 12  |-  ( f : A -1-1-onto-> B  ->  `' f : B -1-1-onto-> A )
3837adantr 481 . . . . . . . . . . 11  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  `' f : B -1-1-onto-> A )
39 f1of 6137 . . . . . . . . . . 11  |-  ( `' f : B -1-1-onto-> A  ->  `' f : B --> A )
4038, 39syl 17 . . . . . . . . . 10  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  `' f : B --> A )
4140adantr 481 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  y : D --> B )  ->  `' f : B --> A )
42 id 22 . . . . . . . . . 10  |-  ( y : D --> B  -> 
y : D --> B )
43 f1of 6137 . . . . . . . . . . 11  |-  ( g : C -1-1-onto-> D  ->  g : C
--> D )
4443adantl 482 . . . . . . . . . 10  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  g : C --> D )
45 fco 6058 . . . . . . . . . 10  |-  ( ( y : D --> B  /\  g : C --> D )  ->  ( y  o.  g ) : C --> B )
4642, 44, 45syl2anr 495 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  y : D --> B )  ->  (
y  o.  g ) : C --> B )
47 fco 6058 . . . . . . . . 9  |-  ( ( `' f : B --> A  /\  ( y  o.  g ) : C --> B )  ->  ( `' f  o.  (
y  o.  g ) ) : C --> A )
4841, 46, 47syl2anc 693 . . . . . . . 8  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  y : D --> B )  ->  ( `' f  o.  (
y  o.  g ) ) : C --> A )
4948ex 450 . . . . . . 7  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  (
y : D --> B  -> 
( `' f  o.  ( y  o.  g
) ) : C --> A ) )
5036, 49syl5 34 . . . . . 6  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  (
y  e.  ( B  ^m  D )  -> 
( `' f  o.  ( y  o.  g
) ) : C --> A ) )
51 f1odm 6141 . . . . . . . . 9  |-  ( f : A -1-1-onto-> B  ->  dom  f  =  A )
5251adantr 481 . . . . . . . 8  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  dom  f  =  A )
5324dmex 7099 . . . . . . . 8  |-  dom  f  e.  _V
5452, 53syl6eqelr 2710 . . . . . . 7  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  A  e.  _V )
55 f1odm 6141 . . . . . . . . 9  |-  ( g : C -1-1-onto-> D  ->  dom  g  =  C )
5655adantl 482 . . . . . . . 8  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  dom  g  =  C )
5731dmex 7099 . . . . . . . 8  |-  dom  g  e.  _V
5856, 57syl6eqelr 2710 . . . . . . 7  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  C  e.  _V )
5954, 58elmapd 7871 . . . . . 6  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  (
( `' f  o.  ( y  o.  g
) )  e.  ( A  ^m  C )  <-> 
( `' f  o.  ( y  o.  g
) ) : C --> A ) )
6050, 59sylibrd 249 . . . . 5  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  (
y  e.  ( B  ^m  D )  -> 
( `' f  o.  ( y  o.  g
) )  e.  ( A  ^m  C ) ) )
61 coass 5654 . . . . . . . . . . 11  |-  ( ( f  o.  `' f )  o.  ( y  o.  g ) )  =  ( f  o.  ( `' f  o.  ( y  o.  g
) ) )
62 f1ococnv2 6163 . . . . . . . . . . . . . 14  |-  ( f : A -1-1-onto-> B  ->  ( f  o.  `' f )  =  (  _I  |`  B ) )
6362ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( f  o.  `' f )  =  (  _I  |`  B ) )
6463coeq1d 5283 . . . . . . . . . . . 12  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( f  o.  `' f )  o.  ( y  o.  g ) )  =  ( (  _I  |`  B )  o.  ( y  o.  g ) ) )
6546adantrl 752 . . . . . . . . . . . . 13  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( y  o.  g ) : C --> B )
66 fcoi2 6079 . . . . . . . . . . . . 13  |-  ( ( y  o.  g ) : C --> B  -> 
( (  _I  |`  B )  o.  ( y  o.  g ) )  =  ( y  o.  g
) )
6765, 66syl 17 . . . . . . . . . . . 12  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( (  _I  |`  B )  o.  (
y  o.  g ) )  =  ( y  o.  g ) )
6864, 67eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( f  o.  `' f )  o.  ( y  o.  g ) )  =  ( y  o.  g
) )
6961, 68syl5eqr 2670 . . . . . . . . . 10  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( f  o.  ( `' f  o.  ( y  o.  g
) ) )  =  ( y  o.  g
) )
7069eqeq2d 2632 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( f  o.  x )  =  ( f  o.  ( `' f  o.  (
y  o.  g ) ) )  <->  ( f  o.  x )  =  ( y  o.  g ) ) )
71 coass 5654 . . . . . . . . . . . 12  |-  ( ( ( f  o.  x
)  o.  `' g )  o.  g )  =  ( ( f  o.  x )  o.  ( `' g  o.  g ) )
72 f1ococnv1 6165 . . . . . . . . . . . . . . 15  |-  ( g : C -1-1-onto-> D  ->  ( `' g  o.  g )  =  (  _I  |`  C ) )
7372ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( `' g  o.  g )  =  (  _I  |`  C ) )
7473coeq2d 5284 . . . . . . . . . . . . 13  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( f  o.  x )  o.  ( `' g  o.  g ) )  =  ( ( f  o.  x )  o.  (  _I  |`  C ) ) )
7510adantrr 753 . . . . . . . . . . . . . 14  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( f  o.  x ) : C --> B )
76 fcoi1 6078 . . . . . . . . . . . . . 14  |-  ( ( f  o.  x ) : C --> B  -> 
( ( f  o.  x )  o.  (  _I  |`  C ) )  =  ( f  o.  x ) )
7775, 76syl 17 . . . . . . . . . . . . 13  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( f  o.  x )  o.  (  _I  |`  C ) )  =  ( f  o.  x ) )
7874, 77eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( f  o.  x )  o.  ( `' g  o.  g ) )  =  ( f  o.  x
) )
7971, 78syl5eq 2668 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( ( f  o.  x )  o.  `' g )  o.  g )  =  ( f  o.  x
) )
8079eqeq2d 2632 . . . . . . . . . 10  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( y  o.  g )  =  ( ( ( f  o.  x )  o.  `' g )  o.  g )  <->  ( y  o.  g )  =  ( f  o.  x ) ) )
81 eqcom 2629 . . . . . . . . . 10  |-  ( ( y  o.  g )  =  ( f  o.  x )  <->  ( f  o.  x )  =  ( y  o.  g ) )
8280, 81syl6bb 276 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( y  o.  g )  =  ( ( ( f  o.  x )  o.  `' g )  o.  g )  <->  ( f  o.  x )  =  ( y  o.  g ) ) )
8370, 82bitr4d 271 . . . . . . . 8  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( f  o.  x )  =  ( f  o.  ( `' f  o.  (
y  o.  g ) ) )  <->  ( y  o.  g )  =  ( ( ( f  o.  x )  o.  `' g )  o.  g
) ) )
84 f1of1 6136 . . . . . . . . . 10  |-  ( f : A -1-1-onto-> B  ->  f : A -1-1-> B )
8584ad2antrr 762 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  f : A -1-1-> B )
86 simprl 794 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  x : C --> A )
8748adantrl 752 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( `' f  o.  ( y  o.  g ) ) : C --> A )
88 cocan1 6546 . . . . . . . . 9  |-  ( ( f : A -1-1-> B  /\  x : C --> A  /\  ( `' f  o.  (
y  o.  g ) ) : C --> A )  ->  ( ( f  o.  x )  =  ( f  o.  ( `' f  o.  (
y  o.  g ) ) )  <->  x  =  ( `' f  o.  (
y  o.  g ) ) ) )
8985, 86, 87, 88syl3anc 1326 . . . . . . . 8  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( f  o.  x )  =  ( f  o.  ( `' f  o.  (
y  o.  g ) ) )  <->  x  =  ( `' f  o.  (
y  o.  g ) ) ) )
9028adantr 481 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  g : C -onto-> D )
91 ffn 6045 . . . . . . . . . 10  |-  ( y : D --> B  -> 
y  Fn  D )
9291ad2antll 765 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  y  Fn  D
)
9317adantrr 753 . . . . . . . . . 10  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( f  o.  x )  o.  `' g ) : D --> B )
94 ffn 6045 . . . . . . . . . 10  |-  ( ( ( f  o.  x
)  o.  `' g ) : D --> B  -> 
( ( f  o.  x )  o.  `' g )  Fn  D
)
9593, 94syl 17 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( f  o.  x )  o.  `' g )  Fn  D )
96 cocan2 6547 . . . . . . . . 9  |-  ( ( g : C -onto-> D  /\  y  Fn  D  /\  ( ( f  o.  x )  o.  `' g )  Fn  D
)  ->  ( (
y  o.  g )  =  ( ( ( f  o.  x )  o.  `' g )  o.  g )  <->  y  =  ( ( f  o.  x )  o.  `' g ) ) )
9790, 92, 95, 96syl3anc 1326 . . . . . . . 8  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( ( y  o.  g )  =  ( ( ( f  o.  x )  o.  `' g )  o.  g )  <->  y  =  ( ( f  o.  x )  o.  `' g ) ) )
9883, 89, 973bitr3d 298 . . . . . . 7  |-  ( ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  /\  ( x : C --> A  /\  y : D --> B ) )  ->  ( x  =  ( `' f  o.  ( y  o.  g
) )  <->  y  =  ( ( f  o.  x )  o.  `' g ) ) )
9998ex 450 . . . . . 6  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  (
( x : C --> A  /\  y : D --> B )  ->  (
x  =  ( `' f  o.  ( y  o.  g ) )  <-> 
y  =  ( ( f  o.  x )  o.  `' g ) ) ) )
1006, 36, 99syl2ani 688 . . . . 5  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  (
( x  e.  ( A  ^m  C )  /\  y  e.  ( B  ^m  D ) )  ->  ( x  =  ( `' f  o.  ( y  o.  g ) )  <->  y  =  ( ( f  o.  x )  o.  `' g ) ) ) )
1014, 5, 35, 60, 100en3d 7992 . . . 4  |-  ( ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  ( A  ^m  C )  ~~  ( B  ^m  D ) )
102101exlimivv 1860 . . 3  |-  ( E. f E. g ( f : A -1-1-onto-> B  /\  g : C -1-1-onto-> D )  ->  ( A  ^m  C )  ~~  ( B  ^m  D ) )
1033, 102sylbir 225 . 2  |-  ( ( E. f  f : A -1-1-onto-> B  /\  E. g 
g : C -1-1-onto-> D )  ->  ( A  ^m  C )  ~~  ( B  ^m  D ) )
1041, 2, 103syl2anb 496 1  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  ^m  C
)  ~~  ( B  ^m  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   class class class wbr 4653    _I cid 5023   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887  (class class class)co 6650    ^m cmap 7857    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-en 7956
This theorem is referenced by:  mapdom1  8125  mapdom2  8131  pwen  8133  mappwen  8935  mapcdaen  9006  cfpwsdom  9406  rpnnen  14956  rexpen  14957  enrelmap  38291
  Copyright terms: Public domain W3C validator