MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem9 Structured version   Visualization version   Unicode version

Theorem fin1a2lem9 9230
Description: Lemma for fin1a2 9237. In a chain of finite sets, initial segments are finite. (Contributed by Stefan O'Rear, 8-Nov-2014.)
Assertion
Ref Expression
fin1a2lem9  |-  ( ( [ C.]  Or  X  /\  X  C_ 
Fin  /\  A  e.  om )  ->  { b  e.  X  |  b  ~<_  A }  e.  Fin )
Distinct variable groups:    A, b    X, b

Proof of Theorem fin1a2lem9
Dummy variables  c 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfin2 8152 . . . . 5  |-  om  =  ( On  i^i  Fin )
2 inss2 3834 . . . . 5  |-  ( On 
i^i  Fin )  C_  Fin
31, 2eqsstri 3635 . . . 4  |-  om  C_  Fin
4 peano2 7086 . . . 4  |-  ( A  e.  om  ->  suc  A  e.  om )
53, 4sseldi 3601 . . 3  |-  ( A  e.  om  ->  suc  A  e.  Fin )
653ad2ant3 1084 . 2  |-  ( ( [ C.]  Or  X  /\  X  C_ 
Fin  /\  A  e.  om )  ->  suc  A  e. 
Fin )
743ad2ant3 1084 . . 3  |-  ( ( [ C.]  Or  X  /\  X  C_ 
Fin  /\  A  e.  om )  ->  suc  A  e. 
om )
8 breq1 4656 . . . . . 6  |-  ( b  =  c  ->  (
b  ~<_  A  <->  c  ~<_  A ) )
98elrab 3363 . . . . 5  |-  ( c  e.  { b  e.  X  |  b  ~<_  A }  <->  ( c  e.  X  /\  c  ~<_  A ) )
10 simprr 796 . . . . . . . 8  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  c  ~<_  A )
11 simpl2 1065 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  X  C_  Fin )
12 simprl 794 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  c  e.  X )
1311, 12sseldd 3604 . . . . . . . . . 10  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  c  e.  Fin )
14 finnum 8774 . . . . . . . . . 10  |-  ( c  e.  Fin  ->  c  e.  dom  card )
1513, 14syl 17 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  c  e.  dom  card )
16 simpl3 1066 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  A  e.  om )
173, 16sseldi 3601 . . . . . . . . . 10  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  A  e.  Fin )
18 finnum 8774 . . . . . . . . . 10  |-  ( A  e.  Fin  ->  A  e.  dom  card )
1917, 18syl 17 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  A  e.  dom  card )
20 carddom2 8803 . . . . . . . . 9  |-  ( ( c  e.  dom  card  /\  A  e.  dom  card )  ->  ( ( card `  c )  C_  ( card `  A )  <->  c  ~<_  A ) )
2115, 19, 20syl2anc 693 . . . . . . . 8  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  ( ( card `  c )  C_  ( card `  A )  <->  c  ~<_  A ) )
2210, 21mpbird 247 . . . . . . 7  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  ( card `  c )  C_  ( card `  A ) )
2322ex 450 . . . . . 6  |-  ( ( [ C.]  Or  X  /\  X  C_ 
Fin  /\  A  e.  om )  ->  ( (
c  e.  X  /\  c  ~<_  A )  -> 
( card `  c )  C_  ( card `  A
) ) )
24 cardnn 8789 . . . . . . . . 9  |-  ( A  e.  om  ->  ( card `  A )  =  A )
2524sseq2d 3633 . . . . . . . 8  |-  ( A  e.  om  ->  (
( card `  c )  C_  ( card `  A
)  <->  ( card `  c
)  C_  A )
)
26 cardon 8770 . . . . . . . . 9  |-  ( card `  c )  e.  On
27 nnon 7071 . . . . . . . . 9  |-  ( A  e.  om  ->  A  e.  On )
28 onsssuc 5813 . . . . . . . . 9  |-  ( ( ( card `  c
)  e.  On  /\  A  e.  On )  ->  ( ( card `  c
)  C_  A  <->  ( card `  c )  e.  suc  A ) )
2926, 27, 28sylancr 695 . . . . . . . 8  |-  ( A  e.  om  ->  (
( card `  c )  C_  A  <->  ( card `  c
)  e.  suc  A
) )
3025, 29bitrd 268 . . . . . . 7  |-  ( A  e.  om  ->  (
( card `  c )  C_  ( card `  A
)  <->  ( card `  c
)  e.  suc  A
) )
31303ad2ant3 1084 . . . . . 6  |-  ( ( [ C.]  Or  X  /\  X  C_ 
Fin  /\  A  e.  om )  ->  ( ( card `  c )  C_  ( card `  A )  <->  (
card `  c )  e.  suc  A ) )
3223, 31sylibd 229 . . . . 5  |-  ( ( [ C.]  Or  X  /\  X  C_ 
Fin  /\  A  e.  om )  ->  ( (
c  e.  X  /\  c  ~<_  A )  -> 
( card `  c )  e.  suc  A ) )
339, 32syl5bi 232 . . . 4  |-  ( ( [ C.]  Or  X  /\  X  C_ 
Fin  /\  A  e.  om )  ->  ( c  e.  { b  e.  X  |  b  ~<_  A }  ->  ( card `  c
)  e.  suc  A
) )
34 elrabi 3359 . . . . 5  |-  ( c  e.  { b  e.  X  |  b  ~<_  A }  ->  c  e.  X )
35 elrabi 3359 . . . . 5  |-  ( d  e.  { b  e.  X  |  b  ~<_  A }  ->  d  e.  X )
36 ssel 3597 . . . . . . . . . . 11  |-  ( X 
C_  Fin  ->  ( c  e.  X  ->  c  e.  Fin ) )
37 ssel 3597 . . . . . . . . . . 11  |-  ( X 
C_  Fin  ->  ( d  e.  X  ->  d  e.  Fin ) )
3836, 37anim12d 586 . . . . . . . . . 10  |-  ( X 
C_  Fin  ->  ( ( c  e.  X  /\  d  e.  X )  ->  ( c  e.  Fin  /\  d  e.  Fin )
) )
3938imp 445 . . . . . . . . 9  |-  ( ( X  C_  Fin  /\  (
c  e.  X  /\  d  e.  X )
)  ->  ( c  e.  Fin  /\  d  e. 
Fin ) )
40393ad2antl2 1224 . . . . . . . 8  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  d  e.  X
) )  ->  (
c  e.  Fin  /\  d  e.  Fin )
)
41 sorpssi 6943 . . . . . . . . 9  |-  ( ( [ C.]  Or  X  /\  (
c  e.  X  /\  d  e.  X )
)  ->  ( c  C_  d  \/  d  C_  c ) )
42413ad2antl1 1223 . . . . . . . 8  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  d  e.  X
) )  ->  (
c  C_  d  \/  d  C_  c ) )
43 finnum 8774 . . . . . . . . . . 11  |-  ( d  e.  Fin  ->  d  e.  dom  card )
44 carden2 8813 . . . . . . . . . . 11  |-  ( ( c  e.  dom  card  /\  d  e.  dom  card )  ->  ( ( card `  c )  =  (
card `  d )  <->  c 
~~  d ) )
4514, 43, 44syl2an 494 . . . . . . . . . 10  |-  ( ( c  e.  Fin  /\  d  e.  Fin )  ->  ( ( card `  c
)  =  ( card `  d )  <->  c  ~~  d ) )
4645adantr 481 . . . . . . . . 9  |-  ( ( ( c  e.  Fin  /\  d  e.  Fin )  /\  ( c  C_  d  \/  d  C_  c ) )  ->  ( ( card `  c )  =  ( card `  d
)  <->  c  ~~  d
) )
47 fin23lem25 9146 . . . . . . . . . . 11  |-  ( ( c  e.  Fin  /\  d  e.  Fin  /\  (
c  C_  d  \/  d  C_  c ) )  ->  ( c  ~~  d 
<->  c  =  d ) )
48473expa 1265 . . . . . . . . . 10  |-  ( ( ( c  e.  Fin  /\  d  e.  Fin )  /\  ( c  C_  d  \/  d  C_  c ) )  ->  ( c  ~~  d  <->  c  =  d ) )
4948biimpd 219 . . . . . . . . 9  |-  ( ( ( c  e.  Fin  /\  d  e.  Fin )  /\  ( c  C_  d  \/  d  C_  c ) )  ->  ( c  ~~  d  ->  c  =  d ) )
5046, 49sylbid 230 . . . . . . . 8  |-  ( ( ( c  e.  Fin  /\  d  e.  Fin )  /\  ( c  C_  d  \/  d  C_  c ) )  ->  ( ( card `  c )  =  ( card `  d
)  ->  c  =  d ) )
5140, 42, 50syl2anc 693 . . . . . . 7  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  d  e.  X
) )  ->  (
( card `  c )  =  ( card `  d
)  ->  c  =  d ) )
52 fveq2 6191 . . . . . . 7  |-  ( c  =  d  ->  ( card `  c )  =  ( card `  d
) )
5351, 52impbid1 215 . . . . . 6  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  d  e.  X
) )  ->  (
( card `  c )  =  ( card `  d
)  <->  c  =  d ) )
5453ex 450 . . . . 5  |-  ( ( [ C.]  Or  X  /\  X  C_ 
Fin  /\  A  e.  om )  ->  ( (
c  e.  X  /\  d  e.  X )  ->  ( ( card `  c
)  =  ( card `  d )  <->  c  =  d ) ) )
5534, 35, 54syl2ani 688 . . . 4  |-  ( ( [ C.]  Or  X  /\  X  C_ 
Fin  /\  A  e.  om )  ->  ( (
c  e.  { b  e.  X  |  b  ~<_  A }  /\  d  e.  { b  e.  X  |  b  ~<_  A }
)  ->  ( ( card `  c )  =  ( card `  d
)  <->  c  =  d ) ) )
5633, 55dom2d 7996 . . 3  |-  ( ( [ C.]  Or  X  /\  X  C_ 
Fin  /\  A  e.  om )  ->  ( suc  A  e.  om  ->  { b  e.  X  |  b  ~<_  A }  ~<_  suc  A
) )
577, 56mpd 15 . 2  |-  ( ( [ C.]  Or  X  /\  X  C_ 
Fin  /\  A  e.  om )  ->  { b  e.  X  |  b  ~<_  A }  ~<_  suc  A )
58 domfi 8181 . 2  |-  ( ( suc  A  e.  Fin  /\ 
{ b  e.  X  |  b  ~<_  A }  ~<_  suc  A )  ->  { b  e.  X  |  b  ~<_  A }  e.  Fin )
596, 57, 58syl2anc 693 1  |-  ( ( [ C.]  Or  X  /\  X  C_ 
Fin  /\  A  e.  om )  ->  { b  e.  X  |  b  ~<_  A }  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916    i^i cin 3573    C_ wss 3574   class class class wbr 4653    Or wor 5034   dom cdm 5114   Oncon0 5723   suc csuc 5725   ` cfv 5888   [ C.] crpss 6936   omcom 7065    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-rpss 6937  df-om 7066  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765
This theorem is referenced by:  fin1a2lem11  9232
  Copyright terms: Public domain W3C validator