MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0 Structured version   Visualization version   Unicode version

Theorem ist0 21124
Description: The predicate "is a T0 space." Every pair of distinct points is topologically distinguishable. For the way this definition is usually encountered, see ist0-3 21149. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
ist0.1  |-  X  = 
U. J
Assertion
Ref Expression
ist0  |-  ( J  e.  Kol2  <->  ( J  e. 
Top  /\  A. x  e.  X  A. y  e.  X  ( A. o  e.  J  (
x  e.  o  <->  y  e.  o )  ->  x  =  y ) ) )
Distinct variable groups:    x, o,
y, J    o, X, x, y

Proof of Theorem ist0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . . 4  |-  ( j  =  J  ->  U. j  =  U. J )
2 ist0.1 . . . 4  |-  X  = 
U. J
31, 2syl6eqr 2674 . . 3  |-  ( j  =  J  ->  U. j  =  X )
4 raleq 3138 . . . . 5  |-  ( j  =  J  ->  ( A. o  e.  j 
( x  e.  o  <-> 
y  e.  o )  <->  A. o  e.  J  ( x  e.  o  <->  y  e.  o ) ) )
54imbi1d 331 . . . 4  |-  ( j  =  J  ->  (
( A. o  e.  j  ( x  e.  o  <->  y  e.  o )  ->  x  =  y )  <->  ( A. o  e.  J  (
x  e.  o  <->  y  e.  o )  ->  x  =  y ) ) )
63, 5raleqbidv 3152 . . 3  |-  ( j  =  J  ->  ( A. y  e.  U. j
( A. o  e.  j  ( x  e.  o  <->  y  e.  o )  ->  x  =  y )  <->  A. y  e.  X  ( A. o  e.  J  (
x  e.  o  <->  y  e.  o )  ->  x  =  y ) ) )
73, 6raleqbidv 3152 . 2  |-  ( j  =  J  ->  ( A. x  e.  U. j A. y  e.  U. j
( A. o  e.  j  ( x  e.  o  <->  y  e.  o )  ->  x  =  y )  <->  A. x  e.  X  A. y  e.  X  ( A. o  e.  J  (
x  e.  o  <->  y  e.  o )  ->  x  =  y ) ) )
8 df-t0 21117 . 2  |-  Kol2  =  { j  e.  Top  | 
A. x  e.  U. j A. y  e.  U. j ( A. o  e.  j  ( x  e.  o  <->  y  e.  o )  ->  x  =  y ) }
97, 8elrab2 3366 1  |-  ( J  e.  Kol2  <->  ( J  e. 
Top  /\  A. x  e.  X  A. y  e.  X  ( A. o  e.  J  (
x  e.  o  <->  y  e.  o )  ->  x  =  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   U.cuni 4436   Topctop 20698   Kol2ct0 21110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-uni 4437  df-t0 21117
This theorem is referenced by:  t0sep  21128  t0top  21133  ist0-2  21148  cnt0  21150
  Copyright terms: Public domain W3C validator