| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnt0 | Structured version Visualization version Unicode version | ||
| Description: The preimage of a T0 topology under an injective map is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 21044 |
. . 3
| |
| 2 | 1 | 3ad2ant3 1084 |
. 2
|
| 3 | simpl3 1066 |
. . . . . . . . 9
| |
| 4 | cnima 21069 |
. . . . . . . . 9
| |
| 5 | 3, 4 | sylan 488 |
. . . . . . . 8
|
| 6 | eleq2 2690 |
. . . . . . . . . 10
| |
| 7 | eleq2 2690 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | bibi12d 335 |
. . . . . . . . 9
|
| 9 | 8 | rspcv 3305 |
. . . . . . . 8
|
| 10 | 5, 9 | syl 17 |
. . . . . . 7
|
| 11 | eqid 2622 |
. . . . . . . . . . . . . 14
| |
| 12 | eqid 2622 |
. . . . . . . . . . . . . 14
| |
| 13 | 11, 12 | cnf 21050 |
. . . . . . . . . . . . 13
|
| 14 | 3, 13 | syl 17 |
. . . . . . . . . . . 12
|
| 15 | ffn 6045 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | syl 17 |
. . . . . . . . . . 11
|
| 17 | elpreima 6337 |
. . . . . . . . . . 11
| |
| 18 | 16, 17 | syl 17 |
. . . . . . . . . 10
|
| 19 | simprl 794 |
. . . . . . . . . . 11
| |
| 20 | 19 | biantrurd 529 |
. . . . . . . . . 10
|
| 21 | 18, 20 | bitr4d 271 |
. . . . . . . . 9
|
| 22 | elpreima 6337 |
. . . . . . . . . . 11
| |
| 23 | 16, 22 | syl 17 |
. . . . . . . . . 10
|
| 24 | simprr 796 |
. . . . . . . . . . 11
| |
| 25 | 24 | biantrurd 529 |
. . . . . . . . . 10
|
| 26 | 23, 25 | bitr4d 271 |
. . . . . . . . 9
|
| 27 | 21, 26 | bibi12d 335 |
. . . . . . . 8
|
| 28 | 27 | adantr 481 |
. . . . . . 7
|
| 29 | 10, 28 | sylibd 229 |
. . . . . 6
|
| 30 | 29 | ralrimdva 2969 |
. . . . 5
|
| 31 | simpl1 1064 |
. . . . . 6
| |
| 32 | 14, 19 | ffvelrnd 6360 |
. . . . . 6
|
| 33 | 14, 24 | ffvelrnd 6360 |
. . . . . 6
|
| 34 | 12 | t0sep 21128 |
. . . . . 6
|
| 35 | 31, 32, 33, 34 | syl12anc 1324 |
. . . . 5
|
| 36 | 30, 35 | syld 47 |
. . . 4
|
| 37 | simpl2 1065 |
. . . . 5
| |
| 38 | fdm 6051 |
. . . . . . . 8
| |
| 39 | 14, 38 | syl 17 |
. . . . . . 7
|
| 40 | f1dm 6105 |
. . . . . . . 8
| |
| 41 | 37, 40 | syl 17 |
. . . . . . 7
|
| 42 | 39, 41 | eqtr3d 2658 |
. . . . . 6
|
| 43 | 19, 42 | eleqtrd 2703 |
. . . . 5
|
| 44 | 24, 42 | eleqtrd 2703 |
. . . . 5
|
| 45 | f1fveq 6519 |
. . . . 5
| |
| 46 | 37, 43, 44, 45 | syl12anc 1324 |
. . . 4
|
| 47 | 36, 46 | sylibd 229 |
. . 3
|
| 48 | 47 | ralrimivva 2971 |
. 2
|
| 49 | 11 | ist0 21124 |
. 2
|
| 50 | 2, 48, 49 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-top 20699 df-topon 20716 df-cn 21031 df-t0 21117 |
| This theorem is referenced by: restt0 21170 sst0 21177 t0hmph 21593 |
| Copyright terms: Public domain | W3C validator |