![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tbt | Structured version Visualization version Unicode version |
Description: A wff is equivalent to its equivalence with a truth. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
tbt.1 |
![]() ![]() |
Ref | Expression |
---|---|
tbt |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tbt.1 |
. 2
![]() ![]() | |
2 | ibibr 358 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | pm5.74ri 261 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: tbtru 1494 exists1 2561 eqvf 3204 reu6 3395 vprc 4796 iotanul 5866 elnev 38639 |
Copyright terms: Public domain | W3C validator |