MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exists1 Structured version   Visualization version   Unicode version

Theorem exists1 2561
Description: Two ways to express "only one thing exists." The left-hand side requires only one variable to express this. Both sides are false in set theory; see theorem dtru 4857. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
exists1  |-  ( E! x  x  =  x  <->  A. x  x  =  y )
Distinct variable group:    x, y

Proof of Theorem exists1
StepHypRef Expression
1 df-eu 2474 . 2  |-  ( E! x  x  =  x  <->  E. y A. x ( x  =  x  <->  x  =  y ) )
2 equid 1939 . . . . . 6  |-  x  =  x
32tbt 359 . . . . 5  |-  ( x  =  y  <->  ( x  =  y  <->  x  =  x
) )
4 bicom 212 . . . . 5  |-  ( ( x  =  y  <->  x  =  x )  <->  ( x  =  x  <->  x  =  y
) )
53, 4bitri 264 . . . 4  |-  ( x  =  y  <->  ( x  =  x  <->  x  =  y
) )
65albii 1747 . . 3  |-  ( A. x  x  =  y  <->  A. x ( x  =  x  <->  x  =  y
) )
76exbii 1774 . 2  |-  ( E. y A. x  x  =  y  <->  E. y A. x ( x  =  x  <->  x  =  y
) )
8 nfae 2316 . . 3  |-  F/ y A. x  x  =  y
9819.9 2072 . 2  |-  ( E. y A. x  x  =  y  <->  A. x  x  =  y )
101, 7, 93bitr2i 288 1  |-  ( E! x  x  =  x  <->  A. x  x  =  y )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   A.wal 1481   E.wex 1704   E!weu 2470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474
This theorem is referenced by:  exists2  2562
  Copyright terms: Public domain W3C validator