| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exists1 | Structured version Visualization version Unicode version | ||
| Description: Two ways to express "only one thing exists." The left-hand side requires only one variable to express this. Both sides are false in set theory; see theorem dtru 4857. (Contributed by NM, 5-Apr-2004.) |
| Ref | Expression |
|---|---|
| exists1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2474 |
. 2
| |
| 2 | equid 1939 |
. . . . . 6
| |
| 3 | 2 | tbt 359 |
. . . . 5
|
| 4 | bicom 212 |
. . . . 5
| |
| 5 | 3, 4 | bitri 264 |
. . . 4
|
| 6 | 5 | albii 1747 |
. . 3
|
| 7 | 6 | exbii 1774 |
. 2
|
| 8 | nfae 2316 |
. . 3
| |
| 9 | 8 | 19.9 2072 |
. 2
|
| 10 | 1, 7, 9 | 3bitr2i 288 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 |
| This theorem is referenced by: exists2 2562 |
| Copyright terms: Public domain | W3C validator |