| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotanul | Structured version Visualization version Unicode version | ||
| Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there
isn't exactly one |
| Ref | Expression |
|---|---|
| iotanul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2474 |
. 2
| |
| 2 | dfiota2 5852 |
. . 3
| |
| 3 | alnex 1706 |
. . . . . 6
| |
| 4 | dfnul2 3917 |
. . . . . . 7
| |
| 5 | equid 1939 |
. . . . . . . . . . . 12
| |
| 6 | 5 | tbt 359 |
. . . . . . . . . . 11
|
| 7 | 6 | biimpi 206 |
. . . . . . . . . 10
|
| 8 | 7 | con1bid 345 |
. . . . . . . . 9
|
| 9 | 8 | alimi 1739 |
. . . . . . . 8
|
| 10 | abbi 2737 |
. . . . . . . 8
| |
| 11 | 9, 10 | sylib 208 |
. . . . . . 7
|
| 12 | 4, 11 | syl5req 2669 |
. . . . . 6
|
| 13 | 3, 12 | sylbir 225 |
. . . . 5
|
| 14 | 13 | unieqd 4446 |
. . . 4
|
| 15 | uni0 4465 |
. . . 4
| |
| 16 | 14, 15 | syl6eq 2672 |
. . 3
|
| 17 | 2, 16 | syl5eq 2668 |
. 2
|
| 18 | 1, 17 | sylnbi 320 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-uni 4437 df-iota 5851 |
| This theorem is referenced by: iotassuni 5867 iotaex 5868 dfiota4 5879 dfiota4OLD 5880 csbiota 5881 tz6.12-2 6182 dffv3 6187 csbriota 6623 riotaund 6647 isf32lem9 9183 grpidval 17260 0g0 17263 |
| Copyright terms: Public domain | W3C validator |