MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotanul Structured version   Visualization version   Unicode version

Theorem iotanul 5866
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one  x that satisfies  ph. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotanul  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )

Proof of Theorem iotanul
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2474 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 dfiota2 5852 . . 3  |-  ( iota
x ph )  =  U. { z  |  A. x ( ph  <->  x  =  z ) }
3 alnex 1706 . . . . . 6  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  <->  -.  E. z A. x
( ph  <->  x  =  z
) )
4 dfnul2 3917 . . . . . . 7  |-  (/)  =  {
z  |  -.  z  =  z }
5 equid 1939 . . . . . . . . . . . 12  |-  z  =  z
65tbt 359 . . . . . . . . . . 11  |-  ( -. 
A. x ( ph  <->  x  =  z )  <->  ( -.  A. x ( ph  <->  x  =  z )  <->  z  =  z ) )
76biimpi 206 . . . . . . . . . 10  |-  ( -. 
A. x ( ph  <->  x  =  z )  -> 
( -.  A. x
( ph  <->  x  =  z
)  <->  z  =  z ) )
87con1bid 345 . . . . . . . . 9  |-  ( -. 
A. x ( ph  <->  x  =  z )  -> 
( -.  z  =  z  <->  A. x ( ph  <->  x  =  z ) ) )
98alimi 1739 . . . . . . . 8  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  A. z ( -.  z  =  z  <->  A. x
( ph  <->  x  =  z
) ) )
10 abbi 2737 . . . . . . . 8  |-  ( A. z ( -.  z  =  z  <->  A. x ( ph  <->  x  =  z ) )  <->  { z  |  -.  z  =  z }  =  { z  |  A. x ( ph  <->  x  =  z ) } )
119, 10sylib 208 . . . . . . 7  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  { z  |  -.  z  =  z }  =  { z  |  A. x (
ph 
<->  x  =  z ) } )
124, 11syl5req 2669 . . . . . 6  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  { z  | 
A. x ( ph  <->  x  =  z ) }  =  (/) )
133, 12sylbir 225 . . . . 5  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  { z  |  A. x ( ph  <->  x  =  z ) }  =  (/) )
1413unieqd 4446 . . . 4  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  =  U. (/) )
15 uni0 4465 . . . 4  |-  U. (/)  =  (/)
1614, 15syl6eq 2672 . . 3  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  =  (/) )
172, 16syl5eq 2668 . 2  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  ( iota x ph )  =  (/) )
181, 17sylnbi 320 1  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483   E.wex 1704   E!weu 2470   {cab 2608   (/)c0 3915   U.cuni 4436   iotacio 5849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-uni 4437  df-iota 5851
This theorem is referenced by:  iotassuni  5867  iotaex  5868  dfiota4  5879  dfiota4OLD  5880  csbiota  5881  tz6.12-2  6182  dffv3  6187  csbriota  6623  riotaund  6647  isf32lem9  9183  grpidval  17260  0g0  17263
  Copyright terms: Public domain W3C validator