| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu6 | Structured version Visualization version Unicode version | ||
| Description: A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.) |
| Ref | Expression |
|---|---|
| reu6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 2919 |
. 2
| |
| 2 | 19.28v 1909 |
. . . . 5
| |
| 3 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 4 | sbequ12 2111 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | anbi12d 747 |
. . . . . . . . . . 11
|
| 6 | equequ1 1952 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | bibi12d 335 |
. . . . . . . . . 10
|
| 8 | equid 1939 |
. . . . . . . . . . . 12
| |
| 9 | 8 | tbt 359 |
. . . . . . . . . . 11
|
| 10 | simpl 473 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | sylbir 225 |
. . . . . . . . . 10
|
| 12 | 7, 11 | syl6bi 243 |
. . . . . . . . 9
|
| 13 | 12 | spimv 2257 |
. . . . . . . 8
|
| 14 | ibar 525 |
. . . . . . . . . . 11
| |
| 15 | 14 | bibi1d 333 |
. . . . . . . . . 10
|
| 16 | 15 | biimprcd 240 |
. . . . . . . . 9
|
| 17 | 16 | sps 2055 |
. . . . . . . 8
|
| 18 | 13, 17 | jca 554 |
. . . . . . 7
|
| 19 | 18 | axc4i 2131 |
. . . . . 6
|
| 20 | biimp 205 |
. . . . . . . . . . 11
| |
| 21 | 20 | imim2i 16 |
. . . . . . . . . 10
|
| 22 | 21 | impd 447 |
. . . . . . . . 9
|
| 23 | 22 | adantl 482 |
. . . . . . . 8
|
| 24 | eleq1a 2696 |
. . . . . . . . . . . 12
| |
| 25 | 24 | adantr 481 |
. . . . . . . . . . 11
|
| 26 | 25 | imp 445 |
. . . . . . . . . 10
|
| 27 | biimpr 210 |
. . . . . . . . . . . . . 14
| |
| 28 | 27 | imim2i 16 |
. . . . . . . . . . . . 13
|
| 29 | 28 | com23 86 |
. . . . . . . . . . . 12
|
| 30 | 29 | imp 445 |
. . . . . . . . . . 11
|
| 31 | 30 | adantll 750 |
. . . . . . . . . 10
|
| 32 | 26, 31 | jcai 559 |
. . . . . . . . 9
|
| 33 | 32 | ex 450 |
. . . . . . . 8
|
| 34 | 23, 33 | impbid 202 |
. . . . . . 7
|
| 35 | 34 | alimi 1739 |
. . . . . 6
|
| 36 | 19, 35 | impbii 199 |
. . . . 5
|
| 37 | df-ral 2917 |
. . . . . 6
| |
| 38 | 37 | anbi2i 730 |
. . . . 5
|
| 39 | 2, 36, 38 | 3bitr4i 292 |
. . . 4
|
| 40 | 39 | exbii 1774 |
. . 3
|
| 41 | df-eu 2474 |
. . 3
| |
| 42 | df-rex 2918 |
. . 3
| |
| 43 | 40, 41, 42 | 3bitr4i 292 |
. 2
|
| 44 | 1, 43 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-cleq 2615 df-clel 2618 df-ral 2917 df-rex 2918 df-reu 2919 |
| This theorem is referenced by: reu3 3396 reu6i 3397 reu8 3402 xpf1o 8122 ufileu 21723 isppw2 24841 cusgrfilem2 26352 fgreu 29471 fcnvgreu 29472 fourierdlem50 40373 |
| Copyright terms: Public domain | W3C validator |