![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vprc | Structured version Visualization version Unicode version |
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
vprc |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nalset 4795 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | vex 3203 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
3 | 2 | tbt 359 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | albii 1747 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | dfcleq 2616 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | bitr4i 267 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | exbii 1774 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | mtbi 312 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | isset 3207 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 8, 9 | mtbir 313 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
This theorem is referenced by: nvel 4797 vnex 4798 intex 4820 intnex 4821 abnex 6965 snnexOLD 6967 iprc 7101 opabn1stprc 7228 elfi2 8320 fi0 8326 ruALT 8508 cardmin2 8824 00lsp 18981 fveqvfvv 41204 ndmaovcl 41283 |
Copyright terms: Public domain | W3C validator |