| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpprceq3 | Structured version Visualization version Unicode version | ||
| Description: An unordered triple is an unordered pair if one of its elements is a proper class or is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.) |
| Ref | Expression |
|---|---|
| tpprceq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor 509 |
. 2
| |
| 2 | prprc2 4301 |
. . . . 5
| |
| 3 | 2 | uneq1d 3766 |
. . . 4
|
| 4 | tprot 4284 |
. . . . 5
| |
| 5 | df-tp 4182 |
. . . . 5
| |
| 6 | 4, 5 | eqtri 2644 |
. . . 4
|
| 7 | prcom 4267 |
. . . . 5
| |
| 8 | df-pr 4180 |
. . . . 5
| |
| 9 | 7, 8 | eqtri 2644 |
. . . 4
|
| 10 | 3, 6, 9 | 3eqtr4g 2681 |
. . 3
|
| 11 | nne 2798 |
. . . 4
| |
| 12 | tppreq3 4294 |
. . . . 5
| |
| 13 | 12 | eqcoms 2630 |
. . . 4
|
| 14 | 11, 13 | sylbi 207 |
. . 3
|
| 15 | 10, 14 | jaoi 394 |
. 2
|
| 16 | 1, 15 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 df-tp 4182 |
| This theorem is referenced by: tppreqb 4336 1to3vfriswmgr 27144 |
| Copyright terms: Public domain | W3C validator |