| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tppreqb | Structured version Visualization version Unicode version | ||
| Description: An unordered triple is an unordered pair if and only if one of its elements is a proper class or is identical with one of the another elements. (Contributed by Alexander van der Vekens, 15-Jan-2018.) |
| Ref | Expression |
|---|---|
| tppreqb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ianor 1055 |
. . . 4
| |
| 2 | df-3or 1038 |
. . . 4
| |
| 3 | 1, 2 | bitri 264 |
. . 3
|
| 4 | orass 546 |
. . . . 5
| |
| 5 | ianor 509 |
. . . . . . . 8
| |
| 6 | tpprceq3 4335 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylbir 225 |
. . . . . . 7
|
| 8 | tpcoma 4285 |
. . . . . . 7
| |
| 9 | prcom 4267 |
. . . . . . 7
| |
| 10 | 7, 8, 9 | 3eqtr3g 2679 |
. . . . . 6
|
| 11 | orcom 402 |
. . . . . . . 8
| |
| 12 | ianor 509 |
. . . . . . . 8
| |
| 13 | 11, 12 | bitr4i 267 |
. . . . . . 7
|
| 14 | tpprceq3 4335 |
. . . . . . 7
| |
| 15 | 13, 14 | sylbi 207 |
. . . . . 6
|
| 16 | 10, 15 | jaoi 394 |
. . . . 5
|
| 17 | 4, 16 | sylbi 207 |
. . . 4
|
| 18 | 17 | orcs 409 |
. . 3
|
| 19 | 3, 18 | sylbi 207 |
. 2
|
| 20 | df-tp 4182 |
. . . 4
| |
| 21 | 20 | eqeq1i 2627 |
. . 3
|
| 22 | ssequn2 3786 |
. . . 4
| |
| 23 | snssg 4327 |
. . . . . . 7
| |
| 24 | elpri 4197 |
. . . . . . . 8
| |
| 25 | nne 2798 |
. . . . . . . . . 10
| |
| 26 | 3mix2 1231 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | sylbir 225 |
. . . . . . . . 9
|
| 28 | nne 2798 |
. . . . . . . . . 10
| |
| 29 | 3mix3 1232 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | sylbir 225 |
. . . . . . . . 9
|
| 31 | 27, 30 | jaoi 394 |
. . . . . . . 8
|
| 32 | 24, 31 | syl 17 |
. . . . . . 7
|
| 33 | 23, 32 | syl6bir 244 |
. . . . . 6
|
| 34 | 3mix1 1230 |
. . . . . . 7
| |
| 35 | 34 | a1d 25 |
. . . . . 6
|
| 36 | 33, 35 | pm2.61i 176 |
. . . . 5
|
| 37 | 36, 1 | sylibr 224 |
. . . 4
|
| 38 | 22, 37 | sylbir 225 |
. . 3
|
| 39 | 21, 38 | sylbi 207 |
. 2
|
| 40 | 19, 39 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-tp 4182 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |