| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unineq | Structured version Visualization version Unicode version | ||
| Description: Infer equality from equalities of union and intersection. Exercise 20 of [Enderton] p. 32 and its converse. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| unineq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2690 |
. . . . . . 7
| |
| 2 | elin 3796 |
. . . . . . 7
| |
| 3 | elin 3796 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | 3bitr3g 302 |
. . . . . 6
|
| 5 | iba 524 |
. . . . . . 7
| |
| 6 | iba 524 |
. . . . . . 7
| |
| 7 | 5, 6 | bibi12d 335 |
. . . . . 6
|
| 8 | 4, 7 | syl5ibr 236 |
. . . . 5
|
| 9 | 8 | adantld 483 |
. . . 4
|
| 10 | uncom 3757 |
. . . . . . . . 9
| |
| 11 | uncom 3757 |
. . . . . . . . 9
| |
| 12 | 10, 11 | eqeq12i 2636 |
. . . . . . . 8
|
| 13 | eleq2 2690 |
. . . . . . . 8
| |
| 14 | 12, 13 | sylbi 207 |
. . . . . . 7
|
| 15 | elun 3753 |
. . . . . . 7
| |
| 16 | elun 3753 |
. . . . . . 7
| |
| 17 | 14, 15, 16 | 3bitr3g 302 |
. . . . . 6
|
| 18 | biorf 420 |
. . . . . . 7
| |
| 19 | biorf 420 |
. . . . . . 7
| |
| 20 | 18, 19 | bibi12d 335 |
. . . . . 6
|
| 21 | 17, 20 | syl5ibr 236 |
. . . . 5
|
| 22 | 21 | adantrd 484 |
. . . 4
|
| 23 | 9, 22 | pm2.61i 176 |
. . 3
|
| 24 | 23 | eqrdv 2620 |
. 2
|
| 25 | uneq1 3760 |
. . 3
| |
| 26 | ineq1 3807 |
. . 3
| |
| 27 | 25, 26 | jca 554 |
. 2
|
| 28 | 24, 27 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |