| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneqin | Structured version Visualization version Unicode version | ||
| Description: Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uneqin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3657 |
. . . 4
| |
| 2 | unss 3787 |
. . . . 5
| |
| 3 | ssin 3835 |
. . . . . . 7
| |
| 4 | sstr 3611 |
. . . . . . 7
| |
| 5 | 3, 4 | sylbir 225 |
. . . . . 6
|
| 6 | ssin 3835 |
. . . . . . 7
| |
| 7 | simpl 473 |
. . . . . . 7
| |
| 8 | 6, 7 | sylbir 225 |
. . . . . 6
|
| 9 | 5, 8 | anim12i 590 |
. . . . 5
|
| 10 | 2, 9 | sylbir 225 |
. . . 4
|
| 11 | 1, 10 | syl 17 |
. . 3
|
| 12 | eqss 3618 |
. . 3
| |
| 13 | 11, 12 | sylibr 224 |
. 2
|
| 14 | unidm 3756 |
. . . 4
| |
| 15 | inidm 3822 |
. . . 4
| |
| 16 | 14, 15 | eqtr4i 2647 |
. . 3
|
| 17 | uneq2 3761 |
. . 3
| |
| 18 | ineq2 3808 |
. . 3
| |
| 19 | 16, 17, 18 | 3eqtr3a 2680 |
. 2
|
| 20 | 13, 19 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 |
| This theorem is referenced by: uniintsn 4514 |
| Copyright terms: Public domain | W3C validator |