| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgr1wlkdlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma 1 for upgr1wlkd 27007. (Contributed by AV, 22-Jan-2021.) |
| Ref | Expression |
|---|---|
| upgr1wlkd.p |
|
| upgr1wlkd.f |
|
| upgr1wlkd.x |
|
| upgr1wlkd.y |
|
| upgr1wlkd.j |
|
| Ref | Expression |
|---|---|
| upgr1wlkdlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1wlkd.j |
. . 3
| |
| 2 | preq2 4269 |
. . . . . . 7
| |
| 3 | 2 | eqeq2d 2632 |
. . . . . 6
|
| 4 | 3 | eqcoms 2630 |
. . . . 5
|
| 5 | simpl 473 |
. . . . . . 7
| |
| 6 | dfsn2 4190 |
. . . . . . 7
| |
| 7 | 5, 6 | syl6eqr 2674 |
. . . . . 6
|
| 8 | 7 | ex 450 |
. . . . 5
|
| 9 | 4, 8 | syl6bi 243 |
. . . 4
|
| 10 | 9 | com13 88 |
. . 3
|
| 11 | 1, 10 | mpd 15 |
. 2
|
| 12 | 11 | imp 445 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: upgr1wlkd 27007 upgr1trld 27008 upgr1pthd 27009 upgr1pthond 27010 |
| Copyright terms: Public domain | W3C validator |