MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pthond Structured version   Visualization version   Unicode version

Theorem 1pthond 27004
Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.)
Hypotheses
Ref Expression
1wlkd.p  |-  P  = 
<" X Y ">
1wlkd.f  |-  F  = 
<" J ">
1wlkd.x  |-  ( ph  ->  X  e.  V )
1wlkd.y  |-  ( ph  ->  Y  e.  V )
1wlkd.l  |-  ( (
ph  /\  X  =  Y )  ->  (
I `  J )  =  { X } )
1wlkd.j  |-  ( (
ph  /\  X  =/=  Y )  ->  { X ,  Y }  C_  (
I `  J )
)
1wlkd.v  |-  V  =  (Vtx `  G )
1wlkd.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
1pthond  |-  ( ph  ->  F ( X (PathsOn `  G ) Y ) P )

Proof of Theorem 1pthond
StepHypRef Expression
1 1wlkd.p . . . . 5  |-  P  = 
<" X Y ">
2 1wlkd.f . . . . 5  |-  F  = 
<" J ">
3 1wlkd.x . . . . 5  |-  ( ph  ->  X  e.  V )
4 1wlkd.y . . . . 5  |-  ( ph  ->  Y  e.  V )
5 1wlkd.l . . . . 5  |-  ( (
ph  /\  X  =  Y )  ->  (
I `  J )  =  { X } )
6 1wlkd.j . . . . 5  |-  ( (
ph  /\  X  =/=  Y )  ->  { X ,  Y }  C_  (
I `  J )
)
7 1wlkd.v . . . . 5  |-  V  =  (Vtx `  G )
8 1wlkd.i . . . . 5  |-  I  =  (iEdg `  G )
91, 2, 3, 4, 5, 6, 7, 81wlkd 27001 . . . 4  |-  ( ph  ->  F (Walks `  G
) P )
101fveq1i 6192 . . . . . 6  |-  ( P `
 0 )  =  ( <" X Y "> `  0
)
11 s2fv0 13632 . . . . . 6  |-  ( X  e.  V  ->  ( <" X Y "> `  0 )  =  X )
1210, 11syl5eq 2668 . . . . 5  |-  ( X  e.  V  ->  ( P `  0 )  =  X )
133, 12syl 17 . . . 4  |-  ( ph  ->  ( P `  0
)  =  X )
142fveq2i 6194 . . . . . . 7  |-  ( # `  F )  =  (
# `  <" J "> )
15 s1len 13385 . . . . . . 7  |-  ( # `  <" J "> )  =  1
1614, 15eqtri 2644 . . . . . 6  |-  ( # `  F )  =  1
171, 16fveq12i 6196 . . . . 5  |-  ( P `
 ( # `  F
) )  =  (
<" X Y "> `  1 )
18 s2fv1 13633 . . . . . 6  |-  ( Y  e.  V  ->  ( <" X Y "> `  1 )  =  Y )
194, 18syl 17 . . . . 5  |-  ( ph  ->  ( <" X Y "> `  1
)  =  Y )
2017, 19syl5eq 2668 . . . 4  |-  ( ph  ->  ( P `  ( # `
 F ) )  =  Y )
21 wlkv 26508 . . . . . . 7  |-  ( F (Walks `  G ) P  ->  ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V ) )
22 3simpc 1060 . . . . . . 7  |-  ( ( G  e.  _V  /\  F  e.  _V  /\  P  e.  _V )  ->  ( F  e.  _V  /\  P  e.  _V ) )
239, 21, 223syl 18 . . . . . 6  |-  ( ph  ->  ( F  e.  _V  /\  P  e.  _V )
)
243, 4, 23jca31 557 . . . . 5  |-  ( ph  ->  ( ( X  e.  V  /\  Y  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
257iswlkon 26553 . . . . 5  |-  ( ( ( X  e.  V  /\  Y  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  -> 
( F ( X (WalksOn `  G ) Y ) P  <->  ( F
(Walks `  G ) P  /\  ( P ` 
0 )  =  X  /\  ( P `  ( # `  F ) )  =  Y ) ) )
2624, 25syl 17 . . . 4  |-  ( ph  ->  ( F ( X (WalksOn `  G ) Y ) P  <->  ( F
(Walks `  G ) P  /\  ( P ` 
0 )  =  X  /\  ( P `  ( # `  F ) )  =  Y ) ) )
279, 13, 20, 26mpbir3and 1245 . . 3  |-  ( ph  ->  F ( X (WalksOn `  G ) Y ) P )
281, 2, 3, 4, 5, 6, 7, 81trld 27002 . . 3  |-  ( ph  ->  F (Trails `  G
) P )
297istrlson 26603 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  -> 
( F ( X (TrailsOn `  G ) Y ) P  <->  ( F
( X (WalksOn `  G
) Y ) P  /\  F (Trails `  G ) P ) ) )
3024, 29syl 17 . . 3  |-  ( ph  ->  ( F ( X (TrailsOn `  G ) Y ) P  <->  ( F
( X (WalksOn `  G
) Y ) P  /\  F (Trails `  G ) P ) ) )
3127, 28, 30mpbir2and 957 . 2  |-  ( ph  ->  F ( X (TrailsOn `  G ) Y ) P )
321, 2, 3, 4, 5, 6, 7, 81pthd 27003 . 2  |-  ( ph  ->  F (Paths `  G
) P )
333adantl 482 . . . . . . 7  |-  ( ( ( F  e.  _V  /\  P  e.  _V )  /\  ph )  ->  X  e.  V )
344adantl 482 . . . . . . 7  |-  ( ( ( F  e.  _V  /\  P  e.  _V )  /\  ph )  ->  Y  e.  V )
35 simpl 473 . . . . . . 7  |-  ( ( ( F  e.  _V  /\  P  e.  _V )  /\  ph )  ->  ( F  e.  _V  /\  P  e.  _V ) )
3633, 34, 35jca31 557 . . . . . 6  |-  ( ( ( F  e.  _V  /\  P  e.  _V )  /\  ph )  ->  (
( X  e.  V  /\  Y  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) ) )
3736ex 450 . . . . 5  |-  ( ( F  e.  _V  /\  P  e.  _V )  ->  ( ph  ->  (
( X  e.  V  /\  Y  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) ) ) )
3821, 22, 373syl 18 . . . 4  |-  ( F (Walks `  G ) P  ->  ( ph  ->  ( ( X  e.  V  /\  Y  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) ) ) )
399, 38mpcom 38 . . 3  |-  ( ph  ->  ( ( X  e.  V  /\  Y  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
407ispthson 26638 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  -> 
( F ( X (PathsOn `  G ) Y ) P  <->  ( F
( X (TrailsOn `  G
) Y ) P  /\  F (Paths `  G ) P ) ) )
4139, 40syl 17 . 2  |-  ( ph  ->  ( F ( X (PathsOn `  G ) Y ) P  <->  ( F
( X (TrailsOn `  G
) Y ) P  /\  F (Paths `  G ) P ) ) )
4231, 32, 41mpbir2and 957 1  |-  ( ph  ->  F ( X (PathsOn `  G ) Y ) P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   {csn 4177   {cpr 4179   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   #chash 13117   <"cs1 13294   <"cs2 13586  Vtxcvtx 25874  iEdgciedg 25875  Walkscwlks 26492  WalksOncwlkson 26493  Trailsctrls 26587  TrailsOnctrlson 26588  Pathscpths 26608  PathsOncpthson 26610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-pthson 26614
This theorem is referenced by:  upgr1pthond  27010  lppthon  27011  1pthon2v  27013
  Copyright terms: Public domain W3C validator